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Table 1 Related Functions Available in Four Popular Software Packages
Names Problem 1 Problem 2 Problem 3 Problem 4 Problem 5
Excel NORMDIST NORMINV NORMDIST N/A CHART
SPSS CDENORMAL IDENORMAL PDENORMAL RV.NORMAL N/A
SAS CDF QUANTILE PDF RAND PROC PLOT
Matlab normcdf norminv normpdf normrnd plot

For some of the most popular software packages,
Table 1 provides the names of functions, modules,
and procedures that can be applied to the five very
typical problems related to the normal curve and the
normal distribution. Note that none of the names
is case sensitive, with the exception of Matlab
functions and modules, which have to be used in
lowercase letters.

4. The family of normal curves that are bell shaped
is only for the univariate case, in which only one vari-
able x is involved. However, in the case of multivari-
ate data analysis, the multivariate normal model,
which extends the univariate normal distribution
model, is commonly used. One example is a bivariate
normal distribution model, which applies to two vari-
ables. In that case, the bell-shaped normal curve
becomes a bell-shaped surface in three dimensions.
Accordingly, the probability is indicated by the vol-
ume under the bivariate normal distribution surface.

—Hongwei Yang
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NuLL HYPOTHESIS
SIGNIFICANCE TESTING

Null hypothesis significance testing (NHST) domi-
nates experimental and correlational methods in
psychological research. Investigators are typically
concerned with demonstrating the existence of an
effect, that is, systematic variation in the data that can
be distinguished from random noise, sampling error,
or variation due to uncontrolled or nuisance variables.
The null hypothesis is often, but does not have to be,
identified with chance, and a p value is computed to
express how improbable observed empirical data are
under the assumption that the null hypothesis is true.
When this probability falls below the conventional
value of .05, it is concluded that the null hypothesis is
false and that it is safe to presume the presence of a
systematic source of variation. This inference is not
strictly logical because modus tollens is not valid
when stated probabilistically: From the statement
“If the null hypothesis is true, then extreme data are
improbable,” it does not follow that “If the data are
probable, the null hypothesis is false.” Because NHST
is a method of inductive, not logical, inference,
researchers nevertheless believe that the rejection of
the null hypothesis indicates the presence of an effect.
In the long run, the argument goes, decisions reached
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by NHST will generate knowledge faster than would
guessing or doing nothing.

Variants of NHST have been developed by various,
and sometimes warring, schools of statistical thought.
These schools differ in the assumptions they make
about the nature of the data and the hypotheses
and about how to make inferences. The following
illustrations of possible inference strategies begin
with information- and assumption-rich scenarios and
proceed to the more degraded scenarios typical of
most psychological research.

Full-Suite Analysis

Suppose extensive testing has revealed that average
self-esteem scores are |L = 68 and 72 for women and
men, respectively, and that the standard deviation
within each gender is ¢ = 20. A sample of 200 scores
with a mean of 71 is drawn from one of the two
populations. The null hypothesis H is that women
were sampled, and the alternative hypothesis H, is
that men were sampled. Analysis begins with the cal-
culation of the probability of obtaining a mean of 71
or higher if His true. The z score for the sample
mean is

(71 — 68)+/200/20 = 2.12,

and the probability of a score at least this extreme
is .017.

Evaluation of the data under the alternative hypoth-
esis H, yields z =71, p = .24. That is, the data are not
improbable under the assumption that men were
sampled. The likelihood ratio (LR) of the two
p values, p(DIH,)/p(DIH,), is 14.12, meaning that it is
more than 14 times more likely that a sample of men
rather than women would yield data of the kind found
in the empirical sample. But how likely is it that the
sample consisted of men? It is necessary to be explicit
about the prior probability of sampling men. A simple
intuition is that women and men were equally likely to
be sampled, that is, p(H,) = p(H,) = .5. The summed

products of these prior probabilities and their respective
p values is the overall probability of the observed data.
Here, p(D) = p(H))p(DIH+p(H,)p(DIH,) = .13. This
probability is critical for the calculation of the probabil-
ity of the null hypothesis given the observed data.
Bayes’ theorem gives p(H D) as p(H,)p(DIH,)/p(D) =
.07. Because the prior probabilities of the two hypothe-
ses are the same, the ratio of the two posterior probabil-
ities is the same as the LR. It can now be said that the
sample is more than 14 times more likely to comprise
men than women. The assumption of equal priors was
just that, an assumption. Suppose the researcher knew
that self-esteem scores were collected at four different
sites, only one of which comprised men. Now p(H|D)
= .18, meaning that it is only 4.7 times more likely for
the sample data to come from men than from women.
Although the prior probability that men were sampled
was low, the evidence is still strong enough to reject the
null hypothesis that women were sampled and to accept
the alternative.

Now consider a study in which 200 women and
200 men are sampled. The null hypothesis is that there
is no gender difference in average self-esteem scores
(Hy: Wyomen = Minen = 70, 6 = 20), and the alternative is
that there is a 4-point difference (H: i =72,
= 68, 6 = 20). During the early phase of the research
program, the two hypotheses may appear to be equally
likely to be true. If the gender difference in the sam-
ple means is 3.5 points, the revised probability
of the null hypothesis is p(H D) = .09. As evidence
accumulates, researchers become aware that some
hypotheses are riskier than others. Suppose gender
differences in self-esteem have become well estab-
lished, so that p(H,) = .1. Now a 3.5 gender difference
still renders the null hypothesis less probable (p(H,|D)
=.01), but there is less room to move.

These examples are idealized: The properties of the

women men

two populations (L and ©) are known, and credible
estimates of their prior probabilities are available.
Scientific research must often proceed without this
full suite of information. Researchers handle the lack
of information by suspending certain kinds of
inference or by making defensible assumptions where
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good information is missing. If the prior probabilities
of competing hypotheses are unavailable in a quantifi-
able and agreed-on format, they can sometimes be
estimated on the basis of prior research or derived
from theory.

Power

Many researchers are careful to situate their findings
within the context of relevant empirical or theoretical
work but refrain from making explicit estimates for
their hypotheses to be true. Suppose again that a 3.5
gender difference in self-esteem is found. Evaluation
of the data under the two hypotheses yields p(DIH) =
.04 and p(DIH,) = .401, and thus LR = 10. With prior
probabilities barred from quantitative inferences,
researchers can still estimate their study’s statistical
power to detect a 4-point gender difference. The
power of the study is the probability that the null
hypothesis will be rejected if it is indeed false. To
obtain this probability, it is necessary to find the min-
imum gender difference leading to the rejection of H,,.
This difference is given by the product of the z score
at which p(DIH;) = .05 and the standard error of
the difference. (The standard error of the difference
between means X |, and X, is

/ 2 2.
Ozl — Oz =4/05 T 053

here, 1.65 x2=23.3.)

The power of the study is the complement of the
probability of such an effect under the alternative
hypothesis. Here, 1 — p(DIH,) = .64. In other words,
the prior odds that this study would detect an existing
difference of 4 points were about 5 to 3.

In principle, many researchers agree that the null
hypothesis should not be rejected when p(DIH,)) > .05.
In practice, however, they tolerate a good number of
exceptions, thus opening the door to the murky world
of “marginal significance.” Researchers typically care
more about limiting the probability that a true
null hypothesis is rejected than about increasing the

probability that a true effect is detected. Designing a
study with a power of .8 is a widely held but seldom
attained ideal. One reason for this shortfall is that
power consumes resources. In the present example, a
total sample of 1,152 individuals would be required to
reach the ideal.

Making Decisions

In the decision-theoretic school of hypothesis testing,
p(DIH,) = .05 signifies the probability with which a
true null hypothesis is rejected. This decision out-
come constitutes a Miss (M). Conversely, p(DIH,) is
the probability that a false null hypothesis is not
rejected, a circumstance called a False Positive (FP).
The complement of an M is a Hit (H), that is, the
retention of a true null hypothesis; the complement of
an FP is a Correct Rejection (CR), that is, the rejec-
tion of a false null hypothesis. The probability of CR
is the power of the study. If there are no resources to
increase power, it is tempting to admit more FP. If the
null hypothesis is rejected with p(DIH,) as high as
.10, power increases from .64 to .76. The practice of
adjusting p(DIH,) is frowned on, however, when it
reflects, not the state of the field and thus appropriate
prior probabilities, but rather the researcher’s desire
to obtain significant results.

Without prior beliefs, there is no way of estimating
how probable the four outcomes are. It is only possi-
ble to state the conditional probability of p(H) relative
to p(M) and of p(FP) relative to p(CR). To illustrate
what can be gained from estimating the prior of the
null, consider p(H,) = .75, .5, and .25. The top panel
of Figure 1 shows the four conditional probabilities
obtained in a high-powered study. Each quadrant of
the bottom panel gives three unconditional probabili-
ties that are obtained as products of the conditional
probabilities and the prior probabilities of the
hypotheses. When, as in the typical empirical case, the
probability of rejecting a true null hypothesis (M) is
smaller than the probability of accepting a false one
(FP), any decrease in the prior probability of H,
decreases the overall probability of correct decisions
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Decision Regarding H,

True False
True Hit Miss
1-p(DIH,) = .95 p(DIH,) = .05
Reality of H,
False Positive Correct Rejection
False p(DIH,) = .20 1-p(DIH,) = .80
Reality of H,
True False
1-p(DIH,) P(Ho) PDIH)P(Ho) | P(Ho)
475 .025 5
.24 .0125 .25
Reality of H,
p(DIH,)P(H,) 1-p(DIH)P(H,) | P(H,)
False .05 2 .25
A 4 5
.15 .6 .75
Figure 1 A Decision-Theoretic Scheme for Null

Hypothesis Significance Testing

(here, p(H) + p(CR) = .91, .88, and .84, respectively,
for p(H,) = .75, .5, and .25). This is an odd, but logi-
cal, result. As an area of research becomes more
mature, null hypotheses become less probable, and the
typical conservatism of decision making (i.e., power
< 1 — desired significance level) makes it more likely
that true effects are missed. Failures to replicate then
accumulate, not because previously demonstrated
phenomena do not exist, but because studies lack
power. Hence, even the principled use of NHST
delays scientific progress. The data of solidly
designed but underpowered studies are dismissed for
ad hoc reasons, or worse, they are seen to add up to a
store of anomalies that potentially undermines hard-
won knowledge.

Filling In

When a new area of research opens up, it is marked by
great uncertainty. The null hypothesis may not have a
defensible prior probability, and there may not be a
well-formulated alternative hypothesis. Without being
able to estimate the posterior probability of the null
and with no opportunity to estimate the power of the
study, researchers seek to collect only enough data to
reject the null. When they do, they can declare only
that an effect has been found, and they can report its
size (for example with Cohen’s d or Pearson’s r).
Power analyses can be performed with the obtained
effect size, but the wisdom of this practice is a matter
of debate. Nevertheless, when enough empirical effect
sizes have been reported to justify their aggregation
by meta-analysis, these combined effect sizes can
serve as point-specific research hypotheses for repli-
cation and extension studies.

The life course of a typical research area entails a
paradox. In the early stages, NHST can be performed
only in its most rudimentary form. At this stage, mis-
information and miseducation are most likely to
contribute to fallacious conclusions, such as the wide-
spread belief that the p value of the data signifies the
improbability of the null hypothesis. In the late stages,
when specific alternative hypotheses are available,
when the power of a study can be determined, and
when the probability of hypotheses can be estimated,
new data contribute little incremental knowledge.
Although NHST can then be used with great preci-
sion, its purpose is now to produce judgments about
the acceptability of the data and not about the truth or
falsity of the hypotheses.

—Joachim I. Krueger
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