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BAYESIAN INFERENCE

SEE Inference, Bayesian.

BAYESIAN STATISTICS

Bayesian statistics is concerned with the relationships
among conditional and unconditional probabilities.
Suppose the sampling space is a bag filled with twenty
black and eighty white balls. The probability of a white
ball being drawn at random is .8, as defined by the rela-
tive frequency of such balls. If three more bags with sev-
enty black and thirty white balls each are in play and a ball
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is drawn at random from one bag, the probability of it
being white is .8 - .25 + .3 - .75 = .425. Once a white ball
is in evidence, the probability that it was drawn from the
bag containing mostly white balls is larger than .25, and
the probability that it was drawn from a bag containing
mostly black balls is less than .75. The estimation of these
inverse probabilities is the object of Bayes’s theorem.

Let the idea that the obtained white ball came
from the bag containing mostly white balls be H, for
“hypothesis,” and the idea that the ball came from a bag
containing mostly black balls be ~H; let the drawing of a
white ball be E, for “evidence.” Bayes’s theorem states

that p(H|[E) = p(E[H)-p(H)
p(E[H)-p(H)+ p(E|~H)-p(~H)
- p<E|H)"P(H), here .471. The ratio ofp(H—|E)
p(E) p(H)

expresses the degree to which the probability of H changes

in light of the evidence. This degree of probability change

can be seen before the posterior probability of H is calcu-
p(H|E) p(E|H)

lated because p(H) is equal to the ratio p(E) , here

1.882.

The prior probability of a hypothesis constrains the
degree to which it can be changed by evidence. If the evi-
dence supports the hypothesis, the magnitude of the
Bayesian revision decreases as the prior probability
becomes larger. Consider the odds version of Bayes’s

pH[E) _ p(E[H) pH)
theorem, which is p(~H|E)_p(E|~H) p(~H).

p(H|E)  p(E[H) p(~HI|E)
Now, p(H) _p(E|~H) p(~H) , which is equal
p(E[H) p(E|~H)

to p(E[~H) (pE[~H)-p(~H)+(pE[H)-p(H). Note

that a larger p(H) reduces the second ratio, and thus
reduces the product of the two ratios (where the first
ratio > 1 if the evidence supports H). Analogously, a large
p(H) leads to a stronger updating if the evidence is con-
trary to H.

The Reverend Thomas Bayes (1702-1761) worked
out his eponymous theorem, but his solution was only
published two years posthumously (see Stigler 1999). The
validity of the theorem is given by its mathemartical coher-
ence. Any of its constituent probabilities can be recovered
if the others are known. As a model of scientific and of
everyday inference, the theorem formalizes inductive rea-
soning. Scientists seek to corroborate or discredit certain
hypotheses, and laypeople (and animals) need to mold
their beliefs at least in part with reference to the observa-
tions they make. For inductive reasoning, not only the
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probable truth of certain beliefs is of interest, but also the
probability that certain events will recur. In the previous
example, the sampling of one white ball not only alters the
probability that any particular bag was sampled, it also
increases the probability that a white ball will be sampled
again (assuming the next draw will be made from the
same bag).

In the short run, the revision of the probability of the
evidence may not reduce uncertainty. In the present
example, where p(E) rises from .425 to .535, one would
be slightly less confident to bet on any particular color for
the next draw. Over repeated sampling, however, p(E)
converges on either p(EIH) or on p(El-H), and p(H) con-
verges on 0 or 1. Prior uncertainty is greatest when there
are many equiprobable hypotheses. If there were 101 bags,
each with the different proportion of white balls, p(E) =
.5. Pierre-Simon Laplace’s (1749-1827) rule of succession
states that once a sample is drawn, the probability that the
next draw (after replacement) will replicate the result is
k+1
n~+ 2, where £ is the number of successes and 7 is the
sample size. For an infinite number of hypotheses, this
rule is obtained with integral calculus.

Bayesian alternatives to conventional hypothesis test-
ing, confidence-interval estimation, meta-analysis, and
regression are available, though computationally cumber-
some. In practice, most researchers remain committed to
orthodox methods that exclude prior knowledge.
Fisherian null hypothesis significance testing, for example,
yields the probabilicy of the evidence under the null
hypothesis, p(EIH). What the researcher really wants,
namely p(HIE), cannot be estimated because, in the
absence of p(El-H), the likelihood ratio remains unde-
fined. If, however, the researcher specifies ~-H (as in the
Neyman-Pearson approach) and assigns a probability to it,
p(HIE) can be quantified. Indeed, prior probabilities can
be represented as a distribution over possible outcomes.
The mean of the posterior distribution is given by the
weighted average of the prior mean and the empirical
mean of the data, where the weights depend on the rela-
tive precision (i.e., the reciprocals of the variance of the
means) of the prior mean and the mean of the data.
Likewise, the standard deviation of the posterior distribu-
tion becomes smaller as the precision of the prior distribu-
tion or the distribution of the data increases (see Howard
et al. [2000] for formulas and a numerical example).

Despite their reluctance to use Bayesian statistics for
data analysis, many social and cognitive psychologists
model the reasoning processes of their research partici-
pants along Bayesian lines (Krueger and Funder 2004).
Any reasoning activities involving decisions, categoriza-
tions, or choices are natural candidates. Given some pro-
bative evidence, people need to decide, for example, if a
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person is male or female, guilty or innocent, healthy or
sick. Likewise, they need to decide whether they should
attribute a person’s behavior to dispositional or situa-
tional causes, and how much they should yield to a per-
suasive message. Even strategic choices between
cooperation and defection in social dilemmas depend on
what people assume others will do, given their own pre-
sumed choices.

The question of whether everyday reasoning satisfies
Bayesian coherence remains controversial. In some con-
texts, such as jury deliberations, people appear to form
their beliefs on the basis of narrative, not probabilistic,
coherence. In other contexts, such as the Monty Hall
problem, they fail to see how Bayes’s theorem can be read-
ily applied. These difficulties can partly be overcome by
altering the presentation of the problem. For example,
diagnostic decisions in medicine are improved when the
data are presented as frequencies instead of probabilities.

Many orthodox significance testers, who disavow the
estimation of inverse probabilities, reveal implicit
Bayesianism in their research practice. After a series of suc-
cessful experiments, the probability of the null hypothesis
being true becomes very small, and reasonable researchers
desist from wasting further resources. The evidence of the
past becomes the theory of the present, thus blurring the
distinction between the two. Other hypotheses, such as
the idea that a concerted mental concentration of a collec-
tive of people can alter the earth’s magnetic field, are so
improbable a priori that even devout Fisherians would not
consider testing them.

SEE ALSO Prediction; Probability; Psychometrics;
Regression
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