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Null hypothesis significance testing (NHST) is the re-
searcher’s workhorse for making inductive inferences. This
method has often been challenged, has occasionally been
defended, and has persistently been used through most of
the history of scientific psychology. This article reviews
both the criticisms of NHST and the arguments brought to
its defense. The review shows that the criticisms address
the logical validity of inferences arising from NHST,
whereas the defenses stress the pragmatic value of these
inferences. The author suggests that both critics and apol-
ogists implicitly rely on Bayesian assumptions. When these
assumptions are made explicit, the primary challenge for
NHST—and any system of induction—can be confronted.
The challenge is to find a solution to the question of
replicability.

nductive inference is the only process known to us by
which essentially new knowledge comes into the
world. (Fisher, 1935/1960, p. 7)

The supposition that the future resembles the past is not founded
on arguments of any kind, but is derived entirely from habit, by
which we are determined to expect for the future the same train of
objects to which we have been accustomed. (Hume, 1739/1978,
p. 184)

During my first semester in college, 1 participated in a
student research project. We wanted to know whether
people would be more willing to help a blind person than
a drunk person in need. Using the wrong-number technique
to collect data (Gaertner & Bickman, 1971) and a chi-
square test to analyze them, we rejected the hypothesis that
there was no difference in helping behavior. We learned
from this experience that the analysis of experimental data
leads to inferences about the probability of future events.
When differences between conditions are improbable under
the null hypothesis, researchers attribute these differences
to stable underlying causes and thus expect to observe these
differences again under similar circumstances. In Fisher’s
(1935/1960) words, “a phenomenon is experimentally de-
monstrable when we know how to conduct an experiment
which will rarely fail to give us a statistically significant
result” (p. 14).

Though plausible, the chain of inferences constitut-
ing null hypothesis significance testing (NHST) has of-
ten been criticized (see Morrison & Henkel, 1970, for an
excellent collection of articles). Over the past decade,
the debate over the validity of this method has become

polarized with partisan arguments condemning its flaws
(Cohen, 1994) or praising its virtues (Hagen, 1997). In
search of common ground, I reviewed both attacks on
NHST and the arguments brought to its defense, which
ultimately led me to the same conclusion that Hume
(1739/1978) drew more than 200 years ago: Inductive
inferences cannot be logically justified, but they can be
defended pragmatically.

Hume (1739/1978) observed that induction cannot be
validated by methods other than induction itself: “There
can be no demonstrative arguments to prove that those
instances of which we have had no experience resemble
those of which we have had experience” (p. 136). Induction
from sample observations—no matter how numerous—
cannot provide certain knowledge of population character-
istics. Because induction worked well in the past, however,
we hope it will work in the future. This itself is an inductive
inference that can be justified only by further induction,
and so on. Empirical research must either accept this leap
of faith or break down. Because knowledge “must include
reliable predictions” (Reichenbach, 1951, p. 89), we “act as
if we have solved the problem of induction” (Dawes, 1997,
p- 387).

Fisher (1935/1960) illustrated the properties of NHST
with a test of Mrs. Bristol’s claim that she could tell
whether milk was added to tea or tea was added to milk.
Following this example, I sometimes tell students that I can
detect hidden objects. To test this claim, I ask a volunteer
to hide a coin in one hand and to hold out both fists in front
of him or her. Then 1 ask for the fists to be moved out to the
sides, and I point to the one that I think holds the coin.
Students may not believe that I am clairvoyant when I
recover the coin, but they suspect that I have some relevant
information. But why would they conclude anything after
witnessing one successful demonstration? Assuming that
Lady Luck grants success with a probability of .5, a single
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success is not “statistically significant.” Students’ apparent
willingness to reject the luck hypothesis suggests that they
perform an intuitive analogue of NHST with 4 lax decision
criterion.

Most scientists demand more evidence before attrib-
uting findings to something other than luck. Suppose I do
the coin experiment eight times with seven successes. The
probability of that happening, or anything more extreme
(i.e., eight successes), is .035 if the null hypothesis is true.
This result is obtained as the sum of the binomial proba-
bilities for the number of successes (r) and any number
more extreme (until » = N, the total number of trials). With
p being the hypothesized probability of success on an
individual trial, the formula is

N

2 (,,N)p*(l = i

r

NHST suggests that the chance (null) hypothesis can
be rejected. This does not mean that clairvoyance has been
proven. Less exotic explanations, such as trickery or sen-
sitivity to nonverbal cues, remain. NHST simply suggests
that the results need not be attributed to chance. It suggests
that “there is not nothing” (Dawes, 1991, p. 252). Such an
inference is a probabilistic proof by contradiction (modus
tollens). If the null hypothesis is true, orderly data are
improbable. If improbable data appear, the null hypothesis
is probably false. If the null hypothesis is false, then some-
thing ellse more substantive is probably going on (Chow,
1998).

The key concern about this chain of inference is that
deductive syllogisms are not valid when applied to induc-
tion. There are three specific criticisms. First, any point-
specific hypothesis is false, and no data are needed to reject

it. The goal of experimentation must therefore be some-
thing other than the rejection of null hypotheses. Second,
even if one assumes that a hypothesis is true, data that are
improbable under that hypothesis do not reveal how im-
probable the hypothesis is given the data. No contradiction,
however, improbable, can disprove anything if the pre-
mises are uncertain. Third, significance levels say little
about the chances of rejecting the null hypothesis in a
replication study. NHST does not offer much help with
predictions about future, yet-to-be-observed events. De-
fenders of NHST dispute each of these criticisms. I con-
sider both sides of each argument and suggest possible
resolutions.

The Null Hypothesis Is Always False:
True or False?

Thesis: The Null Hypothesis Is Always False

In a probabilistic world, there is rarely “not nothing.”
Something is usually going on. Most human behavior is
nonrandom, although little of it is relevant for the settling
of theoretical issues. In a similar manner, any human trait
is related to other traits by whatever small degree of asso-
ciation (Lykken, 1991). To show that there is not nothing
does not make for rapid scientific progress (Mechl, 1990).

The argument that the null hypothesis is always false
rests on the idea that hypotheses refer to populations rather
than samples. Populations are mathematical abstractions
assuming that the number of potential observations is in-
finite. An infinite number of observations implies an infi-
nite number of possible states of the population, and each
of these states may be a distinct hypothesis. With an infinite
number of hypotheses, no individual hypothesis can be true
with any calculable probability. “It can only be true in the
bowels of a computer processor running a Monte Carlo
study (and even then a stray electron may make it false)”
(Cohen, 1990, p. 1308). If the probability of a point hy-
pothesis is indeterminate, the empirical discovery that such
a hypothesis is false is no discovery at all, and thus adds
nothing to what is already known. A failure to detect the
falsity of a hypothesis reflects only the imprecision of
measurement or the limitations of sampling: it does not
indicate that there is nothing to be detected in principle
(Thompson, 1997).

If there is no expectation regarding the possible truth
of the null hypothesis, its falsification by data is a redun-
dant step. Falsification makes sense only when no excep-
tions are allowed. If one assumes, for example, that cows
die when they are beheaded, a single surviving cow refutes
this premise (Paulos, 1998). If, however, exceptions are
allowed, no evidence can refute the hypothesis. Improbable
data are just that: improbable. “With a large enough sam-

!'These inferences characterize the weak use of significance tests,
which is common in psychology. The strong use requires a substantive
(non-nil) hypothesis to be subjected to potential falsification.
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ple, any outrageous thing is likely to happen” (Diaconis &
Mosteller, 1989, p. 859).

Antithesis: Some Null Hypotheses Are True

Some defenders of NHST point out that the null hypothesis
can be true in a finite population. Assuming error-free
measurement, it is possible to show, for exampie, that
exactly half of American men have fantasized about Raquel
Welch. Because the number of American men is fixed at
any given time, the null hypothesis can be true when this
number is even. When the population does not have a fixed
size, one would have to assume that it does. Assuming, for
example, that a roulette wheel lasts 38 million spins, the
null hypothesis is that each number (0, 00, and 1 through
36) comes up 1 million times.?> A failure to reject the null
hypothesis, given sample data, is then the correct decision.
The question remains as to why the population should be
limited to 38 million spins. Neither NHST nor any other
formal mechanism solves this problem. There is no logical
justification for predicating the presumed truth of the null
hypothesis on a population of any particular size.

One pragmatic strategy is to estimate population size
by relying on past experience. Tests of bias may be linked,
for example, to the lifetimes of past roulette wheels. Al-
though this strategy works well for casino operators, its
logic remains circular. It justifies the validity of one induc-
tive inference only by reference to another. In the coin-
detection experiment, the null hypothesis is that I have no
-ability to locate the coin. If I decide on the total number of
tests to be performed, I prejudge the decision about the
truth or falsity of this ability. The more performances I
anticipate, the smaller is the probability that exactly half
will be successful. If, for example, I anticipate only 4 trials,
the probability of two successes is .375; if I anticipate 10
trials, the probability of five successes is .246. When the
number of anticipated trials approaches infinity, the prob-
ability of a match becomes infinitesimally small. Because
the ability that I intend to test is an abstract idea, its
existence cannot depend on the number of opportunities I
have to exercise it. Once the population is allowed to be
infinite, samples of any size can be drawn. Significance
tests will eveptually suggest that performance is either
better or worse than chance.

“By increasing the size of the experiment, we can
render it more sensitive, meaning by this that it will allow
the detection of . . . a quantitatively smaller departure from
the null hypothesis™ (Fisher, 1935/1960, pp. 21-22). Fish-

er’s argument entails the impossibility of selecting a max-

imum number of observations without prejudging the status
of the null hypothesis. It is impossible to claim that a
sample is so large that its size is sufficiently similar to the
population. Even the largest sample is infinitely smaller
than the infinite population.

Intuitions about sample size contradict this claim.
Some samples are so large that they seem to be represen-
tative of the population. Thus, the second argument against
the assumed falsity of the null hypothesis points to notable
failures to obtain significance (Oakes, 1975). Karl Pearson
failed to reject the hypothesis that his coin was fair after

24,000 flips and 12,012 heads (Moore & McCabe, 1993).
Instead of proving the null hypothesis, the small size of this
effect—p(heads) = .5005—only predicts the persistence
needed to make it significant. Significance eventually
emerges because “whatever effect we are measuring, the
best-supported hypothesis is always that the unknown true
effect is equal to the observed effect” (Goodman, 1999b, p.
1007). If it were flipped four million times, Pearson’s coin
would probably be judged to be biased. Alas, practicing
researchers are familiar with small effects that elude sig-
nificance. The decision to leave them to nonsignificance is
usually pragmatic, indicating that the estimated effect size
does not justify the effort needed to attain significance.

The lack of significance does not establish the truth of
the null hypothesis, however tempting this conclusion
might be. Indeed, if there were one proven null hypothesis,
the claim that all such hypotheses are false would itself be
“demonstrably false” (Lewandowsky & Maybery, 1998, p.
210). There would be no telling how many more true null
hypotheses there might be. Fisher (1935/1960) himself -
cautioned against attempts to prove the null hypothesis. Its
falsity is, after all, an analytical matter, which cannot be
verified by enumeration of rejected null hypotheses and
which cannot be falsified by famous failures to reach
significance.

The third argument defends NHST by allowing sub-
jective beliefs to affect decisions about hypotheses. It says
that some null hypotheses are true because we already
know, or firmly believe, that they are true. Pearson as-
sumed his coin to be fair, and the data did not strongly
contradict his assumption. In a similar manner, skeptics
adhere to null hypotheses because if they did not, they
would have “to accept the fact that knocking on wood will
prevent the occurrence of dreaded events, [or] that black
cats crossing the road are better predictors of future mis-
haps than white cats [when] put to an experimental test
with sufficiently large sample sizes” (Lewandowsky &
Maybery, 1998, p. 210). This argument appeals to existing
convictions that these things are not so. If tests with large

2 Attempts to prove the logical validity of induction create only
epistemic nightmares but no certainty. Hell, the incomparable Bertrand
Russell (1955) imagined

is a place full of all those happenings that are improbable but not
impossible, [and that] . . . there is a peculiarly painful chamber inhabited
solely by philosophers who have refuted Hume. These philosophers,
though in hell, have not learned wisdom. They continue to be governed by
their animal propensity toward induction. But every time that they have
made an induction, the next instance falsifies it. This, however, happens
only during the first hundred years of their damnation. After that, they
learn to expect that an induction will be falsified, and therefore it is not
falsified until another century of logical torment has falsified their expec-
tation. Throughout eternity, surprise continues, but each time at a higher
logical level. (p. 31)

3 The inevitable rejection of the point-specific null hypothesis does
not guarantee that the discerning player can enjoy betting on a favorable
number. A number is favorable only if it comes up with a probability
greater than 1/36 because 2 of the 38 numbers (0 and 00) yield no payoffs.
In practice, therefore, this null hypothesis becomes a range hypothesis
(p < 1/36; Ethier, 1982).

18

January 2001 » American Psychologist



samples are found to be significant, the results would have
to be Type I errors. In other words, the prior probability of
the null hypothesis is so large that improbable data cannot
easily threaten it.

Experiments with control conditions create an analo-
gous situation. Random assignment to conditions without
treatment ought not to produce differences in performance.
Having tried to draw two samples from the same popula-
tion, researchers assume that the null hypothesis is true.
They have ruled out, as best they could, potential sources of
differences between conditions. Like the belief in the fair-
ness of a coin, however, the belief in perfectly random
assignment is ultimately threatened by significant depar-
tures in very large samples. Reasoning pragmatically, most
researchers therefore settle on the null hypothesis when it
fails to be rejected by data from a finite sample. They act as
if the null hypothesis is “true enough™ for the purpose at
hand.

From the practice of pragmatic acceptances of the null
hypothesis, it is tempting to conclude that sometimes no
increase in sample size—no matter how great—will lead to
significance.

Although it may appear that larger and larger Ns are chasing
smaller and smaller differences, when the null is true, the variance
of the test statistic, which is doing the chasing, is a function of the
variance of the differences it is chasing. Thus, the “chaser” never
gets any closer to the “chasee.” (Hagen, 1997, p. 20)

The formula for the ¢ statistic shows what this means. The
index ¢ is the difference between two means divided by the
standard error of that difference. The standard error, in
turn, is the standard deviation of the difference divided by
the square root of the sample size. Thus,

D  Dyn
t=—,0or——.,
s/\/r; s

Because D cannot be exactly 0 and because n has no
ceiling, the test ratio will ultimately grow into significance.
If the null hypothesis is postulated to be true, Hagen’s
argument is correct, but it begs the question of whether the
null hypothesis is true. If the eventual emergence of sig-
nificance is inevitable, why should any test be conducted at
all? Although failures to reject the null hypothesis cannot
prove anything, they may reveal the researchers’ prior
beliefs concerning the null hypothesis. Skeptics evaluating
data regarding supernatural claims and experimenters eval-
uating data from control conditions accept the null hypoth-
esis, in part, because they believe it to be true anyway.
The shortcoming of this objection (i.e., we know some
null hypothesis to be true) is now clear. For mathematical
reasons, which have nothing to do with the theoretical
merit of the hypothesis, one will find that either a particular
claim or its opposite has a kernel of truth. The color of cats
(either black or not black) is related to the fate of those who
encounter them. The association between these variables
might well be ridiculously small, but a judgment about the
ridiculousness of an effect size is not part of NHST. This
judgment can be made only by a human appraising the size

of the effect and the size of the sample necessary to coax
this effect into significance. Most important, acceptance of
nonzero associations between variables must be supported
by plausible mechanisms (Goodman, 1999a). A small but
significant correlation between the color of cats and the
luck of their owners has little meaning unless something is
known about the causes of this association. In a similar
manner, the purpose of control conditions in experiments is
to eliminate confounding variables. The identification of
such variables, however, is a conceptual rather than a
statistical matter.

Synthesis: Making the Subjective Element in
Hypothesis Evaluation Explicit

Despite efforts to banish subjectivism from NHST, the
practice of research shows how prior beliefs about the truth
of hypotheses affect the subsequent evaluation of these
hypotheses. This is hardly surprising because it is difficult
to imagine how a hypothesis can be rejected without an
implicit assessment of the improbability of the hypothesis
given the evidence. Despite his opposition to inverse (i.e.,
Bayesian) probabilities, Fisher (1935/1960) understood
that induction must enable us “to argue from . . . observa-
tions to hypotheses” (p. 3). Decisions about hypotheses
refer to their posterior probabilities, p(H|D), and thus de-
pend not only on the significance level, p(D|H,), but also
on the prior probabilities of the hypotheses, p(H), and on
the overall probability of the data, p(D). Bayes’s theorem
states that

p(D|H)
p(D) ~

The selection of hypotheses, their number, their loca-
tion on the continuum of possible hypotheses, and their
prior probabilities depend on the researchers’ experience,
their theoretical frame of mind, and the state of the field at
the time of study. Consider three versions of the coin
experiment in which observers entertain two different hy-
potheses regarding the probability of locating the coin on
any individual trial. The null hypothesis, H,, assumes per-
formance at chance level (p = .5). Its complement, H,,
reflects a high skill level (p = .9).

The first scenario assumes that observers have no
reason to favor either hypothesis before seeing the evi-
dence. Professing ignorance, they assign the same prior
probability to each. As I noted earlier, the probability of the
data under the null hypothesis is .035. The probability of
the data under the skill hypothesis is .81. The overall
probability of the data is the sum of the two joint proba-
bilities of hypothesis and data: p(D) = p(H,) X p(D[Hy) +
p(H,) X p(D[H,) = .42. According to Bayes's theorem, the
posterior probability of the null hypothesis is .04, and the
posterior probability of the skill hypothesis is .96. The
second scenario assumes that observers have some prior
reason to believe that the coins will be found, perhaps
because they have just heard a lecture on the use of non-
verbal cues in person perception. If they assign a low prior
probability to the null hypothesis (p = .1), its posterior

p{HD) = p(H)
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probability is .005. The third scenario discourages expec-
tations of success. When the coin searcher is blindfolded,
for example, the null hypothesis appears to be rather prob-
able (p = .9), and even seven successes out of eight trials
leave a considerable posterior probability (p = .28).

The third scenario typifies “risky” research because
the investigator doubts that the null hypothesis can be
rejected. When such an experiment “works,” the findings
are impressive. A study is risky, for example, if the ma-
nipulation of its independent variable is only slight, or if
the dependent variable is known to resist experimental
influence (Prentice & Miller, 1992). Weak manipulations
render the null hypothesis probable a priori, whereas strong
manipulations make it improbable. Given identical evi-
dence, Bayes’s theorem suggests that the posterior proba-
bility of the null hypothesis remains higher after a weak
manipulation than after a strong manipulation. The impres-
siveness of evidence is captured by the degree of belief
revision, p(H,) — p(Hy|D), rather than by the strength of
the posterior belief itself. Success in the coin experiment is
more impressive with eyes closed than with eyes open.

Confusion About the Confusion of
Probabilities

Thesis: Significance Says Little About the
Rejectability of the Null Hypothesis

When only a limited number of hypotheses are being
entertained, the first criticism of NHST is moot. The prior
probability of the null hypothesis is assumed to be greater
than zero, and it is therefore possible to estimate its pos-
terior probability. In this situation, the critique of NHST
turns to the validity of this estimate. Specifically, research-
ers are thought to ignore Bayes’s theorem when deciding
the status of the null hypothesis. Instead, they resort to
fallible intuitions reminiscent of those found in everyday
statistical reasoning. They conclude too readily that signif-
icant results imply the improbability of the null hypothesis.
Cohen (1994) offered a diagnostic example. Suppose
that in tests of schizophrenia, the null hypothesis is that a
person is normal, p(Hy) = .98. If the person is normal, the
probability of a positive test result is .03, p(D|H,). Further-
more, the probability that schizophrenia is correctly iden-
tified is .95, p(D[H,). What the patient and the doctor need
to know is the probability that a testee with a positive result
is normal, that is, p(Hy|D). Bayes’s theorem reveals this
probability to be .61. People who ponder problems like this
tend to underestimate this probability. They consider the
null hypothesis to be unlikely when the data are unlikely
under that hypothesis. In Cohen’s example, inferences
about the testee’s health status depend too much on the
false-positive rate of the test (here, .03) and too little on the
probability of health regardless of the test (here, .98).
Falk and Greenbaum (1995) presented many examples
of authors, reviewers, editors, and textbook writers
wrongly believing that the null hypothesis is rendered
improbable (i.e., rejectable) by evidence that is improbable
under that hypothesis (see also Bakan, 1966; Carver, 1978;
Gigerenzer, 1993; Oakes, 1986). Hays and Winkler (1971),

for example, wrote that “a p-value of .01 indicates that H,
is unlikely to be true” (p. 422). Why do many researchers
rush to reject the null hypothesis? The most obvious reason
is that Fisher’s (1935/1960) method seduces practitioners
to make decisions about the null hypothesis on the basis of
incomplete information. According to Fisher, “every ex-
periment may be said to exist only in order to give the facts
a chance of disproving the null hypothesis” (p. 16). If
p(DH,) is all the method provides, how are researchers
supposed to reach a decision concerning the falsity of the
null hypothesis if not by using p(D|H,)? If researchers
suspended judgment, citing the incompleteness of the in-
formation, they could not justify why they ran the experi-
ment in the first place.

Numerous heuristics and biases have been shown to
affect probabilistic reasoning in everyday contexts. These
reasoning shortcuts may also guide the researchers’ infer-
ence processes. The heuristic of anchoring and insufficient
adjustment suggests that probability estimates are biased by
whatever number is offered as potentially relevant, even if
that number is exposed as arbitrary (Tversky & Kahneman,
1974). When a low significance level is the only available
anchor, the estimate for p(H,|D) is easily distorted. Heavy
reliance on significance levels is also consistent with the
representativeness heuristic. Because the two inverse con-
ditional probabilities appear to be conceptually similar,
people assume that p(HyD) = p(D|H,). But as Dawes
(1988) noted, “Associations are symmetric; the world in
general is not” (p. 71).

Gigerenzer (1993) offered a tongue-in-cheek Freudian
metaphor. Although the frequentist superego forbids it, the
Bayesian id wants to reject the null hypothesis on the basis
of improbable evidence. The pragmatic Fisherian ego al-
lows the id to prevail because otherwise nothing is accom-
plished (i.e., published). This neurotic arrangement is sup-
ported by social factors such as rigid training in the rituals
of NHST and the stated policies of journal editors.

Antithesis: Though lllogical, NHST Works in
the Long Run

The charge that null hypotheses are tossed out too easily
need not mean that NHST must be abandoned. Rejecting
null hypotheses may be better than doing nothing. This
view echoes Hume’s (1739/1978) conclusion that induc-
tion is useful if it is properly understood as a matter of
custom and habit rather than logic. Induction may not
work, but it will if anything does (Reichenbach, 1951). 1
consider two specific defenses for the use of significance
levels in decisions about hypotheses.

The first argument is that a Bayesian critique of NHST
lacks an objective foundation. Most prior probabilities of
hypotheses are subjective; unlike significance levels, they
cannot be expressed as long-range frequencies. Because
posterior probabilities are derived, in part, from these prior
probabilities, they have no objective status either. When
making decisions regarding the presumed truth or falsity of
the null hypothesis, researchers only act as if they are
expressing a posterior probability. When forced, perhaps
against their better instincts, to estimate the posterior prob-
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ability of the null hypothesis, researchers may just assume
that p(Hy|D) = p(D|H,). This assumption permits the over-
all probability of the data, p(D), and the prior probability of
the null hypothesis, p(H,), to assume any value as long as
the two are the same. The claim that p(Hy|D) is always the
same as p(D|H,) is thus empirically sterile, and no evidence
can refute it.

The second argument in favor of significance levels is
that they minimize decision errors in the long run. Across
studies, significance levels are correlated with the posterior
probabilities of the null hypothesis for any given set of
prior probabilities (Dixon, 1998; Hagen, 1997). An exper-
iment with a p(D|H;) of .01 provides stronger evidence
against the null hypothesis than an experiment with a
probability of .05. In coin-detection experiments with eight
trials and p(Hy) = .5, for example, six and seven successes
yield p(D|H,) = .145 and .035, respectively. With the skill
hypothesis still assuming that p (success) = .9 on each trial,
the posterior probability of the null hypothesis is smaller
after seven (.04) than after six (.17) successes.

Synthesis: Another Look at the Association
tween Inverse Conditional Probabilities

When there is no expectation of what the size of the effect
might be, the effect obtained in any initial study of a
phenomenon is the best estimate of H,. Assuming this
alternative to the null hypothesis is true, the probability of
the obtained data, or data more extreme, is .5 (or a proba-
bility very close to it; Hedges, 1981). In practice, however,
there is no assurance that the alternative hypothesis is true.
Recall that researchers often distinguish between risky
experiments, in which the null hypothesis is probable, and
safe experiments, in which it is improbable. It is therefore
useful to consider a range of prior probabilities to fully
examine the relationship between significance levels and
the posterior probabilities of the null hypothesis. When
posterior probabilities are plotted against varying signifi-
cance levels, they teach two lessons (see Figure 1). First,
the prior probability of the null hypothesis has to be less
than .35 for the posterior probability of the null hypothesis
to be as low as the conventional significance level of .05.
Second, p(D|H,) and p(Hy|D) are correlated (r = .38), with
their association best described by a logarithmic function,
.0852 In (x) + .4107.

In a way, the critics and the defenders of NHST are
talking at cross-purposes. Whereas the critics emphasize
the inequality of inverse conditional probabilities, unless
p(H) = p(D), defenders point out that Bayes’s theorem
guarantees the two probabilities to be correlated. Again, a
solution to this controversy lies in making prior beliefs
about hypotheses explicit.

The Heart of Induction: Replicability
Thesis: NHST Says Little About the
Replicability of Results

If practicing scientists agree on anything, it is that evidence
must be replicable. If the data collected in the past say
nothing about data to be gathered in the future, empirical

Figure 1
Posterior Probabilities of the Null Hypothesis [H,) as a
Function of Significance Levels

0.7

p(Ho) 9

p(HolD)

0.01 0.03 0.05 0.07 0.09
p(DIHo)
Note. D = data.
|

research is merely historical. A null hypothesis that was
rejected once needs to be rejected again because “no iso-
lated experiment, however significant in itself, can suffice
for the experimental demonstration of any natural phenom-
enon” (Fisher, 1935/1960, p. 14). Replicability is the prob-
ability that the null hypothesis will be rejected in a fol-
low-up study given that it was rejected in an initial study.
If seven out of eight predictions were correct in the coin
experiment, one may ask how likely it is that this feat will
be repeated.

The most serious critique of NHST is that “a small
p-value [is] unrelated to the question of reliability” (i.e.,
replicability; Falk & Greenbaum, 1995, p. 90). Gigerenzer
(1993) remained agnostic about the question of replicabil-
ity, saying that “the answer is unknown” (p. 329). But what
is the purpose of experiments if the replicability of their
results cannot be estimated? “What is knowledge if it does
not include the future” (Reichenbach, 1951, p. 89)? Falk
and Greenbaum suggested that the question of replicability
can be settled only by replication itself:

Instead of measuring the quality of research by the level of
significance, it would be better judged by its consistency of results
in repeated experiments [and] if a researcher does obtain the same
result . . . more than once, it strengthens the conclusion that the
results are not due to chance. (p. 92)

Successful replications push the null hypothesis fur-
ther toward improbability. Experiments with a lot of sta-
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tistical power do the same thing, however. Both replica-
tions across studies and significance levels in individual
studies are events of the past, and both predict the proba-
bility of future replications. If it were impossible to esti-
mate replicability from single studies, it would also be
impossible to do so from many studies. The distinction
between the significance level of a single study and the
record of replications in the past is specious. The force of
the evidence differs only quantitatively, but not in essence.

A less serious critique is that the chances of replica-
tion can be estimated but that practitioners of NHST rou-
tinely overestimate replicability (Tversky & Kahneman,
1971). Many research psychologists believe, for example,
that replicability is the inverse of the significance level
(Oakes, 1986). This “cognitive trap” (Falk & Greenbaum,
1995, p. 90) follows from the confusion of inverse condi-
tional probabilities. If researchers conclude from a signif-
icance level of .05 that the null hypothesis has a probability
of .95 of being false, they might also conclude that the
same hypothesis has a probability of .95 of being rejected
the next time around. This fallacy is well documented. It is
an educational rather than a methodological problem.

Antithesis: NHST Foretells Replicability

Greenwald, Gonzalez, Harris, and Guthrie (1996) showed
that “a p value resulting from NHST is monotonically
related to an estimate of a non-null finding’s replicability”
(p- 179). This relationship holds when three assumptions
are met. The first assumption is that only two hypotheses,
H, and H;, are in contention. The second assumption is that
H, is identified post hoc with the effect size observed in the
initial study (see also Goodman, 1999b; Hagen, 1997;
Krueger, 1998). The third assumption is that replicability is
“the power of an exact replication study” (Greenwald et al.,
1996, p. 179). In other words, replicability is understood as
the probability of the data (or data more extreme) under the
alternative hypothesis, that is, p(D|H,). If, for example, the
significance level of an initial study is .05, the probability
of finding significance in an exact replication study is .5. If,
however, the initial significance level is more extreme (p =
.01), a successful replication (p < .05) is more probable. In
a z distribution, power can be estimated by subtracting the
z score for the minimum desired significance level (e.g.,
1.96 for p = .05, two-tailed) from the z score for the
obtained level (e.g., 2.58 for p = .01) and by finding the
cumulative probability of the difference (p = .73). If, for
example, seven out of eight trials are successful in the
initial coin experiment (p = .035), and if an ability level of
7/8 is considered the most likely hypothesis, the probability
of rejecting the null hypothesis by getting at least seven
successes in Experiment 2 is .74.

Synthesis: Bayesian Assumptions Are Vital
for the Estimation of Replicability

The method proposed by Greenwald et al. (1996) estimates
the replicability of a finding as the probability of rejecting
the null hypothesis assuming that the alternative hypothesis
is true. But recall that the truth of the alternative hypothesis
is only a good guess. The null hypothesis has been rejected

but not disproven. Each hypothesis has a posterior proba-
bility, which depends in part on its prior probability. To
estimate replicability, it is necessary to estimate both the
probability of rejecting the null hypothesis if the alternative
hypothesis is true (power) and the probability of rejecting
the null hypothesis if the alternative hypothesis is false
(Type I error). The sum of these two probabilities is the
probability of replication.

In the first scenario of the coin experiment (uniform
prior probabilities), the prior probability of seven or eight
successes is .42. After seven successes, the posterior prob-
ability of each hypothesis is multiplied by the probability of
this result given that hypothesis. The sum of the products is
the probability that a new experiment will yield at least
seven successes, p(D) = .78. In the eyes-open scenario,
p(D) increases from .74 to .81, and in the eyes-closed
condition (Scenario 3), it increases from .11 to .60. If, in
contrast, the power of the next experiment is accepted as
the probability of replication, expectations are high regard-
less of the prior probabilities. After seven successes, the
probability of seeing at least seven successes, assuming
that the skill hypothesis is true, is .81.

For a more comprehensive view of the relationship
between significance levels and the replicability of the data
(with p < .05), consider a situation with two hypotheses
and data yielding z scores. The prior probability of the null
hypothesis is .1, .5, or .9, with each prior probability of the
alternative hypothesis being the complement. Figure 2

I
Figure 2
Replicability as a Function of Significance levels
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shows coefficients of power and replicability plotted
against nine significance levels. The graph illustrates four
points. First, power coefficients decrease as significance
levels increase (r = -.97). Second, replicability coeffi-
cients also decrease (r = —.97 for each p[H,]). Third,
replicability coefficients are lower than their respective
power coefficients regardiess of prior probabilities and
significance levels. This difference appears because a re-
jected null hypothesis may have been false—as assumed by
power analysis— or true. Fourth, the discrepancies between
the replicability coefficients for different prior probabilities
diminish as significance levels decrease. Evidence eventu-
ally overwhelms a priori differences in opinion because the
prior probabilities enter the inference chain only at the
beginning of the research process (Lindley, 1993). Evi-
dence can accumulate indefinitely and continue to reduce
significance levels.

These examples show that significance levels are use-
ful cues for the replicability of empirical phenomena. If this
is what practitioners learn from their work, they reason
well. An editor of the Journal of Experimental Psychology
once suggested that studies rejecting the null hypothesis at
.01 should be preferred for publication because of the high
reliability (i.e., replicability) of their findings (Melton,
1962). Melton’s editorial has often been cited as an exam-
ple of poor statistical reasoning. In contrast, the present
analysis suggests that although Melton’s policy lacked a
logical foundation, it was reasonable in a pragmatic sense.

Single Studies, Replications, and
Meta-Analyses

I now return to Falk and Greenbaum’s (1995) suggestion
that the demonstrability of a phenomenon hinges on the
question of whether initial findings are actually replicated.
If so, confidence in the falsity of the null hypothesis can be
boosted only by rejecting the null hypothesis in a second
study, not by obtaining a lower significance level in the first
study. In contrast, the foregoing analysis showed that sig-
nificance levels forecast replicability, just as separate suc-
cessful replication studies do.

Exact replications do not provide information that
cannot be gained from single studies with large samples;
they just more rapidly decrease p values. Consider a rep-
lication of the coin experiment. Under the nuil hypothesis,
the probability that both experiments yield at least 7 suc-
cesses is .035% = .0012. But suppose the researcher runs a
single experiment with 16 trials rather than two experi-
ments with 8 trials each. The probability that such an
experiment yields at least 14 successes is .002 under the
null hypothesis. This significance level is not as low as the
combined level from two studies because the 2 failures can
occur anywhere in the sequence of 16 trials. There might be
1 failure in the first half of the experiment and 1 in the
second half, or both might be in the same half. In the case
of two successful 8-trial studies, however, neither one can
contain 2 failures.

Consider the consequences of randomly breaking up
the 16-trial study into two separate experiments. Such a
post hoc split is legitimate when both samples are drawn

from the same population. What is the probability that this
method yields two rejections of the null hypothesis? A
successful replication requires that the two failures are
located in different post hoc experiments. Once the location
of one failure is known, the probability that the other is in
the same experiment is .467 because there are seven other
possible locations in the same experiment but eight possi-
ble locations in the other. Thus, it is slightly more likely
that a post hoc split results in one rejection of the null
hypothesis (with p = .004) and one nonrejection (with p =
.145). Only in the unlikely case that there is one or no
failure among the 16 trials (p = .0003) does any post hoc
split yield two rejections of the null hypothesis. Successful
replications have no special advantage over single studies.
Unsuccessful replications, however, leave problems of in-
terpretation for researchers accustomed to tallying up the
rejection—nonrejection record of a research program. Meta-
analyses avoid this nose-count strategy by combining sig-
nificance levels across studies, with the familiar result that
many replications relegate the data (and thereby the null
hypothesis) to the remote reaches of improbability.*
Replication studies are most valuable if they are con-
ceptual rather than exact (Lykken, 1968). Conceptual rep-
lications are risky because they involve variations in
method and design while preserving the substantive hy-
pothesis. The hypothesis that certain nonverbal signs reveal
the location of the coin, for example, can be tested further
by recruiting a different target person or by training a
different observer.” Researchers gain more confidence in
the robustness of a phenomenon after a successful concep-
tual replication than after an exact replication. After a
conceptual replication, it is difficult to quantify, however,
just how improbable the combined evidence has become
under the null hypothesis, and so the gain in confidence is
qualitative rather than quantitative (Dawes, 1997).

Induction Without Compunction

This review leads to three general conclusions: First, a
logical analysis reveals irreparable limitations of NHST.
No deductive syllogism can establish the validity of this
method, nor can this method validate itself. Second, NHST
rewards the pragmatic scientist. Much has been learned
from this method in the past and presumably more can be
learned in the future. Third, the rift between the logical
incompleteness of NHST and its pragmatic value may be
understood, in part, on psychological grounds (see also
Harlow, Mulaik, & Steiger, 1997).

# Even nonsignificant replications lower the combined p value as
long as results are in the same direction. The ofiginal significant p value
is multiplied with another probability that is smaller than 1. Eventually,
even series of nonsignificant results become meta-analytically significant.

5To make a conceptually broader case for the claim that trained
observers can accurately interpret subtle nonverbal signs without knowl-
edge of those who emit these signs, the type of sign should be varied as
well. As noted conjuror and cognitive psychologist Ray Hyman (personal
communication, June 1988) suggested, the observer can close his eyes and
ask the participant to briefly raise the hand holding the coin. When the
observer opens his eyes after the hand has been lowered again, he can
locate the coin by noting which hand is paler.
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The Limits of Knowledge

Induction is the admission that we cannot know everything.
We generalize not only to events that we hope to observe
in the future but also to observations that we expect to
remain unrealized. Fisher (1935/1960) knew that induction
must involve leaps from a known past to an uncertain
future. At times, however, he denied uncertainty, suggest-
ing that the goal of his method was “to supply the machin-
ery for unambiguous interpretation™ (Fisher, 1935/1960, p.
vii). Much of the confusion created by NHST lies in the
fact that the inferential aspect of this method is distinct
from its computational aspect (Goodman, 1999a). The
computational machinery guarantees that researchers fol-
lowing the same analytical recipe will extract the same
information—namely, p(D|Hy)—from the same data.
When Fisher referred to the “logic” of experimentation, he
may have had this objective aspect in mind. In contrast,
inferences remain subjective and thus ambiguous. Al-
though researchers may agree to reject the null hypothesis
when the probability is less than .05, their theoretical
conclusions may diverge because they (a) implicitly con-
sider different prior probabilities, (b) are prone to biases in
estimating inverse probabilities or probabilities of replica-
tion, or (c¢) differ in their skill or persistence to gather more
data. As one eminent statistician cautioned, “There is no
God-given rule about when and how to make up your mind
in general” (Hays, 1973, p. 353).

The ambiguities of the inference stage can be reduced
when researchers’ Bayesian assumptions are explicit. As a
fina! illustration of this central point, consider researchers’
affective response to their findings. Fisher (1935/1960)
thought that the value of NHST lies in its capacity to
express “the nature and the degree of the uncertainty” (p.
4). More extreme significance levels increase certainty in
the falsity of the null hypothesis. Ironically, however, the
emotion of surprise is said to increase at the same time.
“We can regard the statistical significance or nonsignifi-
cance of a result as a measure of the ‘surprisal value’ of the
result” (Hays, 1973, p. 384). Or, more precisely, “a p
value’s measure of surprise is simply captured by the
number of consecutive zeros to the right of its decimal
point” (Greenwald et al., 1996, p. 178).

The contradiction between increasing certainty and
surprise disappears when one assumes that they occur
sequentially. Giving the null hypothesis some credence a
priori, researchers are surprised to see it rendered improb-
able, and they then gain certainty about its falsity. More
important, the prior probability of the null hypothesis mod-
erates these affective reactions. Safe experiments elicit
greater certainty and less surprise than risky experiments
do. In short, the researchers’ emotional reactions on seeing
their data reveal their implicit assumptions.

Progress Despite Limits

In daily research activity, NHST has proven useful. Re-
searchers make decisions concerning the validity of hy-
potheses, and although their decisions sometimes disagree,
they are not random or arbitrary. Empirical research clearly

requires some mechanism for induction. NHST, especially
when bolstered by Bayesian assumptions, fares quite well
relative to its alternatives. Effect sizes alone do not weed
out findings with large sampling errors (Frick, 1996). Sig-
nificance levels help do this; they indicate how hard a
researcher has worked to reduce error to at least make a
judgment about the direction of the effect.® Significance
levels also forecast replicability better than effect sizes do
(Greenwald et al., 1996). This benefit is not surprising
because p depends on both the effect size and the sample
size, whereas the effect size— by definition—is only that:
the effect size. When a small effect is significant, NHST
does not reveal whether this effect is worth reporting.
Judgments of relevance require the consideration of sub-
jective values (i.e., costs and benefits). Ideally, these values
are consulted beforehand so that minimum effect sizes can
be determined. Unfortunately, researchers are often unwill-
ing or unable to estimate desired or required minimum
effect sizes. Finally, confidence intervals are attractive be-
cause they contain more information than p values do, but
they steer researchers away from drawing categorical con-
clusions about hypotheses (which is what they are trained
to aim for; Feinstein, 1998).

Given the pragmatic benefits of NHST and the lack of
a superior alternative, an all-out ban of this method (Hunt-
er, 1997) seems unnecessary. The American Psychological
Association suggests that inferential tests be supplemented
by other statistical indices (e.g., effect size measures;
Wilkinson & the Task Force on Statistical Inference, 1999).
In short, the pragmatic benefits of induction explain the
continued popularity of NHST. When predicting one’s own
future behavior, it is better to assume that it will resemble
one’s past behavior than to assume nothing (but see Dawes,
1988). Thus, I continue to use NHST when analyzing data.
Kaplan and I recently reported that under certain condi-
tions, a threat to a person’s self-concept can enhance re-
sponsiveness to social influence (Kaplan & Krueger, 1999).
That research was rewarding because it reminded me of my
first contact with psychological experimentation (recall the
experiment with the wrong-number technique), and once
again, a significant chi-square statistic suggested that some-
thing interesting (i.e., not nothing) was going on.

Researchers will probably continue to use NHST to
draw inferences beyond the data given. Even the staunchest
critics of NHST publish articles with conclusions stemming
from rejected null hypotheses (Dawes, 1997; Greenwald et
al., 1996). It is not entirely clear, however, why they do
this. One explanation is that the critics recognize the prag-
matic benefits of NHST, but if they do, one wonders why
they bother to reveal its logical pitfalls. Another possibility
is pluralistic ignorance. Perhaps critics underestimate how

S In areas considered to be soft in psychology (abnormal, personality,
social), effect sizes are negatively correlated with sample sizes but are
positively correlated with power coefficients (Sedlmeier & Gigerenzer,
1989). Many tests of subtle phenomena involve just enough observations
to yield statistical significance. This suggests that at least some researchers
sequentially test null hypotheses and stop collecting data once significance
is obtained.
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effective their attacks have been. Thinking that most other
researchers have remained committed to NHST, they, the
critics, analyze data and report results in a way they think
will yield the greatest dissemination. In a related manner,
critics may remain wary of editors who enforce traditional
statistical rituals.

To Every Thing There Is a Season

1f NHST is here to stay, how much longer will it 1ast? This
is a delicious question because it requires a forecast for the
lifetime of an inductive method, which can be made only
on the basis of some other inductive method. The Coper-
nican principle states that most events are commonplace
rather than special (Gott, 1993). When applied to a point in
time (i.e., now) within a finite period, this point is probably
not near the beginning or the end of this period. Therefore,
the distance to the beginning (looking back) predicts the
distance to the end (looking ahead). Things that only re-
cently came into being (e.g., the Berlin Wall, as Gott
[1993] predicted in 1969) tend to come to an end before
things that have been around for a while (e.g., the Great
Wall of China).

If Fisher’s first edition of The Design of Experiments
in 1935 is taken as the onset of the NHST era, a 50%
confidence level is bounded by a minimum of another 22
years (25% of its lifetime is left) and a maximum of 195
years (25% of its time has passed). Although this interval is
large, it provides a more reasonable prediction than hasty
intuitions about the end being near. Copernican predictions
provide good guesses for unique events, such as the life-
time of the Berlin Wall, the Soviet Empire, or the survival
of homo sapiens. For events that belong to categories with
well-understood lifetimes, however, it is better to rely on
the base rates of survival. It would be foolish, for example,
to expect an 80-year-old to live longer than an 8-year-old or
to expect an old car to outlast a new one.

Induction will probably be around for a while, and
Hume (1739/1978) will be cited for more years than Fisher
(1935/1960). To Hume, induction was a habit of the mind
providing a bridge from observation to learning. Inciden-
tally, the logical insufficiency of this bridge applies to
Hume’s own argument. He could not be certain that people
would continue to learn by induction, but now as much as
then, this expectation is a good one.
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