Bayesian Inference and Belief Networks
昆
St. Mary's Hospital and Florida Atlantic University
Joachim Krueger
Brown University
Clinicians routinely draw inferences from test results to the test taker's latent condition. After all, "a large part of medicine is practiced on people who do not have obvious illnesses, but rather have signs, symptoms, or findings that may or may not represent an illness that should be treated" (Eddy, 1984, p. 75). In the simplest case, both test results and latent conditions are dichotomous variables. Tests turn out either positive or negative, and test takers either do or do not have the
 whether a client with a positive test result has the disease. This judgment

 other cues are internal, such as the prevalence of the disease in the population or the clinician's experience and memory of related cases. In this chapter, we address the integration of external and internal cues in simple Bayesian inference and in more extended belief networks.
јо әш! chances became the cornerstone of a theory of probability that accounts for the interplay of internal, or subjective, and external, or objective, cues. The theory provides methods of principled inductive reasoning and it permits probabilistic predictions about individual cases. The centerpiece of this approach is a theorem stating how beliefs are to be revised in light of evidence. A practicing psychologist is interested in the probability that a person has a certain disease given the presence of a positive result on a test designed to detect this disease. To estimate this

[^0]
Prediction in Forensic and Neuropsychology Sound Statistical Practices

product of the prior probability of being healthy, $p\left(D_{n}\right)$, and the complement of the test's specificity, $p\left(P_{0} \mid D_{n}\right)$. In other words, $p\left(P_{o}\right)$ is itself a combination of internal and external information. The formula reads

Diagnosis and Uncertainty

Consider a hypothetical psychiatric scenario (Cohen, 1994). The base rate of schizophrenia is assumed to be low ($p\left(D_{0}\right)=.021$), and a test designed to diagnose schizophrenia is assumed to have excellent sensitivity $\left(p\left(P_{o} \mid D_{o}\right)=.952\right)$ and specificity $\left(p\left(P_{\mathrm{o}} \mid D_{n}\right)=.969\right)$. Then, the probability of schizophrenia in a randomly tested person with a positive result is $\mathbf{. 4 0}$, namely

$\mathrm{P}(\mathrm{Do} \mid \mathrm{Po})=$

(4.2)

 $.021 * .952+.979 * .031$

 $.021 * .952+.979 * .031$}
The increase in the estimated probability of schizophrenia from
 certain that this individual is healthy. Because a categorical decision concerning the person's health status has become more, rather than less

 two tests are unrelated within the population of sick people and within the population of healthy people. If such independence can be assumed, the posterior probability of the disease obtained after the first test (i.e., .40) can serve as the prior probability for the second test (Winkler,
 disease would rise to .95 if a positive result were obtained again and if
 however, the follow-up tests are not independent, confidence levels will
 it overcomes the psychometric limitations of single tests. In the present
 specificity (with both $p=.999$) so that a single positive result would yield a positive predictive value of .95 .
Sequential testing rapidly dilutes initial differences in clinical opinion, an effect that is often overlooked by critics of Bayesian subjectivism. Potentially divergent prior estimates enter the chain of
 1993; Thorndike, 1986b). For illustration's sake, suppose a more liberal
probability (i.e., $\mathrm{p}\left(\mathrm{D}_{\mathrm{o}} \mid \mathrm{P}_{\mathrm{o}}\right)$), ${ }^{2}$ which is also referred to as the positive predictive value of the test, the psychologist needs to consult the following probabilities. The first probability, which is externally provided by test developers, is the sensitivity of the test. Sensitivity is
 person is known-by whatever other independent and valid method-to have the disease (i.e., $\left.p\left(P_{0} \mid D_{0}\right)\right)$. The second probability, which is also externally provided, is the specificity of the test. Specificity is the
 pue Kyn!!! specificity capture the overall accuracy or "efficiency" of the test. The

 can be assumed, the prior probability of the disease corresponds to the base rate of the disease in the population. If random sampling cannot be
 cues (e.g., symptoms) and the psychologist's experience with
 room for divergent diagnostic inferences drawn from the same test results.

(4.1)
 $p(D 0){ }^{*}(p(P o \mid D 0)+(p(d n) * p(D o \mid D n)$
 $P(D o \mid P o)=$

 aseasip ouf fo seqtumse ioud jeurəu! MOY smous onn "sokeg positive predictive value. The probability that a person who tested positive is sick is the product of the prior probability of a person to be sick and the so-called diagnostic ratio. The diagnostic ratio is the sensitivity of the test divided by the overall probability of a test result to
 K!!iqeqoad aqf pue 'yous si puo an!usod siser uosiod e peqf Ky!!qeqoid that a person tests positive and is healthy. The first of these joint probabilities is the product of the prior probability of being sick, $p\left(D_{0}\right)$, and the test's sensitivity, $p\left(P_{0} \mid D_{0}\right)$; the second joint probability is the
${ }^{2}$ In this notation, the subscript ' 0 ' stands for 'occurrence' (of a disease or a
variously characterized as overconfidence, base-rate neglect, or the

 cancer given a positive X ray (Casscells, Schoenberger, \& Grayboys,

 tests-hardly a desirable prospect.

The over prediction bias may arise not only from the fallibility of statistical intuitions among practitioners, but also from the way in which

 organized according to disease" (Eddy \& Clanton, 1982, p. 1263). Many textbooks offer the mistaken advice that positive test results indicate the presence of the condition in the tested individual regardless of the baserate of that condition in the population (Eddy, 1982). Defenders of clinical (and other intuitive) judgment argue that practitioners reason rather well even when their judgmental task is far more complex than the judgment required in the present single-test, single-disease scenario (Eddy \& Clanton, 1982). Base-rates are hardly ever completely ignored (Koehler, 1996), and judgments appear to be more rational when
 (Birnbaum, 1983). Others suggest that judgments improve when

The latter recommendation is intriguing because it appears to obviate the entire Bayesian enterprise of integrating prior belief (i.e., base-rate information) with empirical evidence (i.e., test results). Cohen (1994) himself presented his numerical example in a frequency format so
 data. The marginal frequencies refer to the individuals with each latent рие '(әапредаи 'sa әa!̣! the cell frequencies refer to the four joint occurrences. Given these frequencies, the probability of the disease given a positive test is easily obtained by dividing the frequency of co-occurrence of the disease and a
positive test result (here: 20) by the marginal frequency of a positive result (here: 50). No base-rate probability of the disease appears to be necessary. It is also evident that the predictive probability is much smaller than the sensitivity of the test (i.e., 20/21).

TABLE 4.1

Joint Frequencies of the Occurrence of the Disease (D_{o}) versus Its Nonoccurrence (D_{n}) and Positive (P_{o}) versus Negative (P_{n}) Test $\longrightarrow \quad$ Predictions

	D_{o}	D_{n}	Total
P_{o}	20	30	50
P_{n}	1	949	950
Total	21	979	1000

${ }^{3}$ This requirement highlights the need for multiple assessment methods.

 population. Bayes's Rule requires that the latter affects the estimate of the嵌
${ }^{4} \mathrm{~A}$ drawback of this measure is that it has no upper limit. Measures of association (i.e., between clients' actual health status and their test results)
 alternatives (e.g., coefficient g, Goodman \& Kruskal, 1954, or coefficients of discrimination derived from signal detection theory, Snodgrass \& Corwin, 1988). nity, $p_{0}\left(D_{0}\right)$, aver the complenent of specificity, $p\left(P_{0} D_{n}\right)$.
P

are rarely sampled randomly. Clinical sampling bias is likely to increase
 for assessment because other probabilistic cues (e.g., symptoms) If, disease lies between the values of test sensitivity and specificity. The need to compile local base-rates for local use highlights a difference between test development and test application (Meehl \& Rosen, 1955). Test development can yield excellent levels of sensitivity and specificity because it operates on contrast groups of roughly equal size. The challenge of test construction is to find independent and valid criteria (i.e., a "gold standard", Elwood, 1993) for whether patients have the

 words, sampling bias must be assessed independently of the test results at hand. ${ }^{3}$

Decomposing Accuracy

 -
constant sensitivity of 8 .
sensitivity and specificity cannot both be maximized, test makers must choose between putting a premium either on correctly diagnosing the presence of a disease or on correctly diagnosing its absence. By Cohen's (1994) example already illustrated, a single positive result may lead to the "paradoxical consequence that deciding on the basis of more information can actually worsen the chances of a correct decision" (Meehl \& Rosen, 1955, p. 202, emphasis in the original). When, for example, the test result is used for the youngest subgroup of the elderly, 2.76% of diagnoses are correct positives (i.e., $\left.p\left(D_{0}\right) * p\left(P_{0} \mid D_{0}\right) * 100\right)=$
 sasouşı!

 true positive rate (sensitivity) to the false positive rate (1-specificity)

 additional testing remains necessary. Perfect reliability and validity cannot be expected from psychometric tests. Even if the sensitivity of the 7 -minute test were to increase to from .92 to .99 , with specificity

 base rate of the disease is low. A drop in sensitivity .46 would be offset
by an increase in specificity to .98 .

 DAT group is the same as the true positive rate for the DAT group.

Bayesian models offer a way of thinking through uncertainty by combining expectations with evidence in a disciplined way. The categorical prediction tasks we have considered so far are relatively simple examples from clinical practice. The range of applicability for
 clinical diagnoses, for example, neuropsychologists often need to integrate psychometric test data with other cues to infer a person's true
 estimate true performance levels and predict future test scores.

Thorndike (1986a) gave an example where a test with a population mean of 100 and a standard deviation of 16 is administered to the same person two years apart (Equation 4.4). The stability correlation for this interval $(r=.85)$ determines the precision with which a score at Time 1 predicts a score at Time 2. The standard error of this prediction is $\mathrm{SE}_{\mathrm{pre}}=16^{*}\left(1-.85^{2}\right)^{5}=8.43$. The reliability coefficient of the test at Time $2(r=.94)$ determines that the standard error of measurement at

 Bayesian Networks
Bayesian networks are statistical models that evaluate relationships

 phenomena. Second, they represent phenomena for which action is
 ецер әшоэұпо рие (sјə!
 inferences (Pearl, 1988).
 requiring a diagnostic judgment. As we have seen, a Bayesian diagnosis
 correspond to signs and symptoms associated with a specific disease or disorder. The diagnosis then becomes the basis for outcome prediction, intervention selection, or additional evaluation. In Bayesian networks, геب!
 probabilities). Once the initial relations are specified, Bayesian networks

Bayesian networks comprise two or more probabilistic variables, or nodes, and relations among the variables, or links. Nodes may contain discrete (e.g., true vs. false) or continuous (e.g., test scores) data. Links connect a source, or parent node, with a target, or child node. Parent nodes may have multiple child nodes, and child nodes may have multiple
 may reflect partial or deterministic causation. Any relation between nodes can be represented in contingency tables.
Once constructed, a Bayesian network is applied to specific
ases. For each known variable value, information is entered as a finding. Then, the network calculates a probabilistic inference to establish beliefs for all the other variables in the network. As is
 probabilities (as opposed to the prior probabilities), which enter the
FRANKLIN AND KRUEGER

n	0	

(1-Base Rate)

${ }^{2}$ sppo ${ }^{10!10150 d}$ - I)	
*	${ }^{\tau}$ Sppo $10!12150 \mathrm{~d}$
Isppo iourasod	
	ərey Oseg
*	$=$

(1-a) ${ }^{(4)}$

$$
\begin{aligned}
& m \\
& \check{2} \\
&
\end{aligned}
$$

Posterior $_{1}$
Posterior $_{2}$

multiple sources, even though development of user-friendly applications

 software interpretation programs, if any, include Bayesian evaluation models in their inference engines.

Edwards (1998) expressed concern that "unless psychologists

 pur sistiojoyoksd Buoure ssou8u!!!M Bu!s! e of salnquyuos neuropsychologists to consider these methods.

ACKNOWLEDGMENTS

 generous feedback on a draft version of this chapter.

REFERENCES
American Guidance Service. (1999). Clinical catalog. Circle
Pines, MN: Author.
Arkes, H. R., Wortmann, R. L., Saville, P. D., \& Harkness, A. R.
(1981). Hindsight bias among physicians weighing the likelihood of
diagnoses. Journal of Applied Psychology, 66, 252-254.
Dascells, W., Schoenberger, A., \& Graybors, T. (1978).
Interpretation by physicians of clinical laboratory results. New England
Bayes, T. (1763). An essay toward solving a problem in the

Signal detection analysis of the cab problem. American Journal of
Cohen, J. (1994). The earth is round ($p<.05$). American
Psychologist, 49, 997-1003.
Dawes, R. M. (1988). Rational choice in an uncertain world. San Diego: Harcourt Brace.

Dawes, R. M. (1994). House of cards: Psychology and psychotherapy built on myth. New York: The Free Press.

Dawes, R. M. (2000). Proper and improper linear models. In T. Connolly, H. Arkes \& K. R. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader ($2^{\text {nd }}$ ed., pp. 378-394). New York: Cambridge University Press.

Communicating statistical information．Science，290，2261－2262． Jones，W．P．（1989）．A proposal for the use of Bayesian probabilities in neuropsychological assessement．Neuropsychology，3， ででし

Kahneman，D．，Slovic，P．，\＆Tversky，A．（1982）．Judgment under uncertainty：Heuristics and biases．Cambridge，England： Cambridge University Press．

Koehler，J．J．（1996）．The base rate fallacy reconsidered： Descriptive，normative，and methodological challenges．Behavioral and Brain Sciences，19，1－53

Krueger，J．（2001）．Null hypothesis significance testing：On the

Lindley，D．V．（1993）．The analysis of experimental data：The －ऽて－乙て＇SI＇sousubis 8u！

Meehl，P．E．，\＆Rosen，A．（1955）．Antecedent probability and
 Psychological Bulletin，52，194－216．

Mellers，B．A．，\＆McGraw，P．（1999）．How to improve Bayesian

Review，106，417－424．
Mellers，B．A．，Schwartz，A．，\＆Cooke，A．D．J．（1998）．
Judgment and decision making．Annual Review of Psychology，49，447－
Nickerson，R．S（2000）．Null hypothesis significance testing：A
review of an old and continuing controversy．Psychological Methods， 5 ，
Norsys Software Corp．（1997）．Netica manual．Vancouver，BC， Canada：Author．

Pearl，J．（1988）．Probabilistic reasoning in intelligent systems：
Networks of plausible inference．San Mateo，CA：Morgan Kaufman．
pир＇slapou＇sapdisuled ：soustivis upisantog（686I）ir＇S＇ssaid －Kə！M ：Yı

The Psychological Corporation（1999）．The catalog for
 TX：Author．

Ransohoff，D．F．，\＆Feinstein，A．R．（1978）．Problems of spectrum and bias in evaluation the efficacy of diagnostic tests．The New England Journal of Medicine，299，926－930．

Eddy，D．M．（1982）．Probabilistic reasoning in clinical medicine：
Problems and opportunities．In D．Kahneman，P．Slovic，\＆A．Tversky （Eds．），Judgment under uncertainty：Heuristics and biases（pp．249－267）． Cambridge，England：Cambridge University Press．

Eddy，D．M．（1984）．Variations in physician practice：The role of uncertainty．Health Affairs，3，74－89．

Eddy，D．M．，\＆Clanton，C．H．（1982）．The art of diagnosis： Solving the clinicopathological exercise．The New England Journal of Medicine，306，1263－1268．

Edwards，W．（1961）．Behavioral decision theory．Annual Review of Psychology，12，473－498．

Edwards，W．（1998）．Hailfinder：Tools for and experiences with Bayesian normative modeling．American Psychologist，53，416－428．

Elwood，R．W．（1993）．Clinical discriminations and neuropsychological tests：An appeal to Bayes＇theorem．The Clinical Neuropsychologist，7，224－233．

Evans，D．A．，Funkenstein，H．H．，Albert，M．S．，Schaer，P．A．，

 population of older persons．Journal of the American Medical Association，262 2551－2556．

Faust，D．，\＆Ziskin，J．（1988）．The expert witness in psychology and psychiatry．Science，241，31－35．

Feinstein，A．R．（1978）．On the sensitivity，specificity，and discrimination of diagnostic tests．Clinical Biostatistics，17，104－1 16.

 Methods，Instruments，\＆Computers，24＿491－492．

Franklin，R．D．，\＆Crosby，F．X．（2001）．Early stopping rules in
 Neuropsychological Society，7（4）， 416.
 neurological assessment：A narrative review and meta－analysis． Gigerenzer，G．，\＆Hoffrage，U．（1995）．How to improve Bayesian reasoning without instruction：Frequency formats． Psychological Review，102，684－704．

Gigerenzer，G．，Hoffrage，U．，\＆Ebert，A．（1998）．AIDS counselling for low－risk clients．AIDS Care，10，197－211．

FIG. A.1. Bayes network for evaluating disorders of conduct.

FRANKLIN AND KRUEGER

Satz, P., Fennell, E., \& Reilly, C. (1970). Predictive validity of six neuropsychological tests: A decision theory analysis. Journal of Consulting and Clinical Psychology, 34, 375-381.

Sedlmeier, P. (1997). BasicBayes: a tutor system for simple
Bayesian inference. Behavior Research Methods, Instrumentats and Computers, 27, 328-336.

Shafer, G. (1996). Probabilistic expert systems. Philadelphia:
SIAM.
Snodgrass, J. G., \& Corwin, J. (1988). Pragmatics of measuring memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34-50.
Solomon, P. R., Hirschoff, A., Kelly, B., Relin, M., Brush, M., DeVeaux, R. D., \& Pendlebury, W. W. (1999). A 7 minute neurocognitive screening battery highly sensitive to Alzheimer's Disease. Archives of Neurology, 55, 349-355.

Thorndike, R. L. (1986a). Bayesian concepts and test
interpretation. Journal of counseling and Development, 65, 170-172.
Thorndike, R. L. (1986b). The role of Bayesian concepts in test development and test interpretation. Journal of Counseling and Development, 65, 54-56.

West, M., \& Harrison, J. (1989). Bayesian forecasting and dynamic models. New York, NY: Springer-Verlag.

Winkler, R. L. (1993). Bayesian statistics: An overview. In G. Keren \& C. Lewis (Eds.), A handbook for data analysis in the behavioral sciences: Statistical Issues (pp. 210-232). Hillsdale, NJ: Lawrence Erlbaum Associates.
BAYESIAN INFERENCE 87
t

FIG. A.3. Bayes network contingency table for node Diagnosis.

FRANKLIN AND KRUEGER

FIG. A. 2 Bayes network contingency table for node Testindex.

[^0]: ${ }^{1}$ Please address correspondence to PO Box 268, Candor, NC 27229 or rdfphd@yahoo.com.

