
1

Manual
Inductive Reasoning Model (IRM) Simulator

Joachim I. Krueger

David M. Freestone

Patrick R. Heck

2

Table of Contents
1.0 Introduction ... 3

2.0 Starter’s Guide (walkthrough) ... 4

2.1: Orienting the user to the interface window ... 4

2.2: The model customization section ... 6

2.3: Modifying a single input parameter and plotting a measure. .. 8

2.4: Varying a single parameter and plotting a line ... 8

2.5: Varying two parameters and plotting in three dimensions .. 9

2.6: Correlating and plotting two user-defined measures... 11

2.7: Plotting select data. .. 12

2.8: Modifying Plot Properties Using Plot Tools .. 14

2.9: Menu Options ... 15

2.10: Example of Detailed Measure Customization ... 16

3.0 Under the Interface hood .. 18

3.1 Simulation .. 18

3.3 Table of some useful Matlab functions ... 28

3.4 Tables of methods and properties ... 29

3.2 Full working example in code .. 30

4.0 Graphics ... 31

4.1 Functions for creating specific plots .. 34

4.2 3-dimensional plots .. 40

4.3 Tables of methods and properties. .. 45

5.0 Interface ... 46

6.0 Example Code... 47

3

1.0 Introduction

This manual describes a Graphical User Interface (GUI) developed for the exploration of the

Inductive Reasoning Model (IRM) and its quantitative implications. The manual has two major sections.

The first section is a starter’s guide, or ‘walkthrough.’ The audience of this section is the regular user

who is interested in applying the model to questions of interest. The walkthrough is therefore strictly

concerned with helping users to discover the GUI’s features so that its capability may be fully exploited.

The second section, ‘Under the interface hood,’ was written for advanced users who are interested in the

code underlying the GUI. These users will find useful information in this section that will allow them to

modify the GUI so that they may pursue questions that currently lie outside of our exposition of the

IRM. The manual closes with two brief sections displaying tables of methods and the example code used

to generate each figure in the published manuscript.

Since the GUI emerged from our work on the IRM, it has become increasingly clear that the

IRM is merely one possible set of psychological questions that the users may address with the GUI. As a

tool, the GUI may find use for the exploration of quantitative relationships and constraints in a variety of

substantive domains. Aside from statistical assumptions and conventions, the GUI is atheoretical. Its

utility is to support and constrain the articulation and the testing theoretical questions in any empirical

domain that is interested in the study of correlations among a small set of variables. If the GUI is

atheoretical, it is also meta-theoretical. By mapping possible outcomes before empirical study, and by

showing what kinds of outcomes are mathematically impossible, the GUI makes a general contribution

to the epistemology of induction.

4

2.0 Starter’s Guide (walkthrough)

This starter’s guide will walk the user through several full simulations using the IRM simulation

interface. The walkthrough begins with the simplest simulation (varying no parameters) and increases in

complexity with each subsequent simulation (varying a single parameter, varying two parameters, and

then calculating correlations between measures over varied parameters). The goal of this starter’s guide

is to introduce the basic functions of the program without technical terminology - all levels of simulation

can be completed without any prior experience programming or running simulations.

2.1: Orienting the user to the interface window
Launching a new simulation will open the interface window. The first time you launch the program, it

may take a while for the program to load - this is normal. The following section of the manual will

identify and describe each part of the interface.

The interface:

The interface window is composed of several different sections, each with unique graphics, inputs, and

functionality. These sections are described below.

5

The message center is designed to guide the user and to display any error messages that may occur

during simulation.

The message center:

If an error occurs, the message center will turn red and display the error encountered.

Example of error display:

To the upper left of the message center is the menu bar. Here, the user can

save or load a simulation, launch a new simulation, toggle simulation

options, view the about screen, and access this manual. The details of the available menu options are

explained at the end of the walkthrough.

Below the menu section is the model input section. The simulator displays the five baseline input

correlations on the top row. Derived correlations are displayed below them. The area filled in blue

represents the generated samples. The red line represents the theoretical distribution from which samples

were drawn.

The Model Input section:

Clicking on another figure or measure will select it – click on r(s,i) now. Note that r(s,i) is now

displayed in bold, indicating that it is currently selected. You can hover over an input to see that

measure’s label in the tooltip that appears.

6

The Modify Input section:

Once the user clicks on a figure in the model input

section, the interface copies that figure into the larger

figure in the bottom right corner. This is the selected

measure/modify input section. Here, the currently

selected measure is displayed as a histogram with its

underlying parameters displayed above it. Currently,

r(s,i) is selected, with ρ = .5 and N = 26. We will walk

through how to change input parameters in section 2.3

2.2: The model customization section
Just above the selected measure/modify input section is the model customization section. At default,

it contains the four user-defined measures introduced in the manuscript.

Model customization section:

To add a new measure, click the plus button

(). A window will appear where you

can enter your new measure.

You can call your new measure anything

you would like, but the formula must be

entered in terms recognized by the model.

For now, add a new measure (type

“Example Measure” into the name box) with

the formula specified as:

r(s,d) * r(s,i) + r(s,o)

(type the formula into the formula box)

then click ‘Accept.’

7

Note that the model customization section now contains your new example measure. Any time you

would like to edit the name or formula of a custom measure, click the * button () to bring up the

custom measure window.

For full details on customizing measures, see section 2.9.

If you would like to remove a custom measure from the simulator, click the measure and then click the

‘-‘ button (). Remember that when you remove a measure, you will no longer be able to use it

until you create it again. For illustration, try removing ‘Differential Accuracy.’

In order to plot a user-defined measure using the data from the current simulation, a custom measure and

plot type combination must be selected. The currently selected plot type (visible in the box above the

custom measure list) is ‘Histogram.’ Click on Self-Enhancement and, with ‘Histogram’ still selected in

the drop down menu, click the arrow button facing toward the right () to add the currently

selected measure and plot type combination to the plot list.

Plot list containing ‘Histogram: Self-Enhancement”:

Now that a user-defined measure is ready for plotting, click the

‘plot selected’ button. This will create a new window containing

the target figure. In this case, you can see that Self-Enhancement

appears distributed around a mean value of just below 0.25.

Note that for any histogram plotted using this approach, the

mean and standard deviation will be included in the top right

corner.

You can add as many measure/plot type combinations to the plot

list as you like. Clicking the ‘plot all’ button will create a new

window and figure for every item in the plot list. (note: it may

8

plot figure windows on top of each other. Move your figure windows to see all your plots). To remove a

measure from the plot list, simply click on the measure, then click on the left arrow button ().

Now that you are familiar with the interface, we will modify one of the input parameters and conduct a

new simulation.

2.3: Modifying a single input parameter

and plotting a measure.
The simulator launches with all parameters set to

the default values specified in the paper. If you

want to see the result of changing one of these

baseline input measures, you can run a new

simulation using your own specified inputs. In

order to do this, you must first click on the input

parameter you would like to change. Remember

that only the top row is modifiable, since all other

measures are derived from these five inputs.

For our example, click on r(s,d) and turn your

attention to the modify input section. The default

value for r(s,d) is 0.5, with N = 26. In order to see

what happens when r(s,d) is strongly negative, replace the default value (0.5) with -0.75 (you can change

N, if you’d like, but your figures will look slightly different than those to the right). After entering the

value, press ‘Enter’ or click on another figure to run the simulation. Note that now the histogram of

values for r(s,d) is centered around the mean we specified: -0.75. Any measures that are calculated using

r(s,d) ((r(i,d), r(o,d), r(d,<i>), and r(d,<o>)) should have changed as well.

Now that r(s,d) has been modified, let’s see what happened to Self-Enhancement. In the model

customization section, click on Self-Enhancement, make sure that ‘Histogram’ is selected in the drop

down menu, add the measure to the plot list, and click ‘Plot Selected.’ The resulting histogram confirms

that decreasing individuals’ positivity of the self-image (r(s,d)) caused the mean value of self-

enhancement to become negative (around -0.3, as seen in the figure).

Using this method, it is possible to modify more (up to all) input parameters to reflect any desired user-

specifications. Note that once a parameter has been altered it remains set at that new value until the user

changes it again or launches a new simulation.

The IRM simulator is also capable of varying an input parameter over a number of steps – this method is

explained in the next section.

2.4: Varying a single parameter and plotting a line
In order to view patterns in user-defined measures over variations in a single input measure, you must

specify a minimum value, maximum value, and number of steps in which to vary an input. For example,

you may want to observe the pattern of change in Self-Enhancement as self-positivity (r(s,d)) increases

from negative to positive. To accomplish this, we will instruct the simulator to vary r(s,d) from -1 to +1

in steps of 0.1.

9

With r(s,d) still selected, enter the following into the

modify input box and press enter: [-1 : 0.1 : 1]. This

instructs the simulator to run 20 separate simulations, one

for each step of the varied parameter (-1, -0.9, -0.8, … 0.9,

and 1). In the large plot, the modified input measure is

plotted against itself as a manipulation check – the

resulting identity line represents r(s,d) plotted in

both the x- and y-axes. You can also vary the

input with specific values by entering them in

brackets and separated by commas: [0, 0.33, 0.5,

0.66, 1]

Notice that the data displayed in the model input

section are now represented by line plots. For

line plots, the varied parameter is always plotted

on the x-axis and the target measure is plotted on

the y-axis. The thick red line represents the mean

of the target measure and the light red shading

represents the standard deviation around the

mean at each step of the simulation.

Now that r(s,d) has been varied over several

steps, we can see how Self-Enhancement varies

as positivity of the self-image increases. In the model customization section, select Self-Enhancement.

Because we are now plotting over variation in a single parameter, you should select ‘Line’ as the plot

type (in order to view mean and standard deviation values over a series of simulations). Add this

combination to the plot queue and click ‘Plot Selected.’ This will plot the mean value as a dark red line

and the standard deviation as a lighter red shading for Self-Enhancement at each simulated step of r(s,d).

The resulting figure is the IRM’s prediction for how Self-Enhancement increases with self-positivity.

The simulator is also able to vary up to two input parameters simultaneously. The following section

explains how to vary a second parameter and plot the resulting simulation.

Note: Once a parameter has been varied, it will not reset to its default value until the user launches a

new simulation or manually resets it. If you want to vary a different parameter than the one currently

varied, you must reset the first parameter to a single value before doing so.

2.5: Varying two parameters and plotting in three dimensions
Now that r(s,d) has been varied from its most negative to most positive, let’s vary a second parameter

and observe the effect on our target measure, Self-Enhancement.

Remember that when you click on another input measure, r(s,d) will remain varied unless you modify it

again or launch a new simulation. Because Self-Enhancement is directly related to both self-positivity

and projection to the ingroup, click on r(s,i). The modify input box should now display the default value

for r(s,i): 0.5. Let’s see what happens as r(s,i) increases from 0 to 1. Type [0 : 0.1 : 1] into the modify

input box and press enter. This will vary r(s,i) from 0 to 1, in 11 steps of 0.1.

10

Note that any time you vary two parameters at once, the simulation time increases drastically. In this

case, it should take between 15 and 60 seconds (depending on your computer). Increasing the number of

points to simulate or the number of steps in which to vary input parameters will cause the simulation to

take several minutes. The message center will update you on the progress of the simulation or tell you if

there was an error.

Message center display during a complex simulation:

Once the simulation is finished, notice that the model input section now displays all measures as heat

maps. Here, the displayed values are normalized so that one color represents the same value in all

figures. Because of this, some figures will be noisy and convey no meaningful information (such as

r(s,o), in this case).

Now that two parameters have been varied, let’s

see what happens to our target measure, Self-

Enhancement. Once two parameters have been

varied, several three-dimensional plot types

become available. For now, select ‘heatmap’ and

plot Self-Enhancement. The plotted value

increases with the warmth of the color. It appears

that generally, Self-Enhancement increases (gets

warmer) with higher self-positivity (plotted on

the x-axis) and decreases (gets cooler) with

higher projection to the ingroup (plotted on the

y-axis).

The second 3D plot available to the user is the

contour plot. This type of plot displays the same

information as the heat map, but instead displays

actual values on a series of contours. Create a

contour plot of Self-Enhancement now and

compare it to the heatmap.

Finally, measures can also be displayed using a

surface plot. This plot is similar in display to the heatmap, but by toggling the “Rotate 3D” button ()

in the figure toolbar, you can manipulate the plot in three dimensions by clicking and dragging the

surface. Create a surface plot, toggle the “Rotate 3D” option, and drag the surface of the plot to get a

feel for the three-dimensional display.

For computational reasons, the IRM simulator can only vary two parameters at one time. This is the

highest-level simulation the interface is capable of running. The final (and most complex) ability of the

simulator described in the paper is to observe the correlation between two user-defined measures over

two varying measures – this is described in the next section

11

 Three types of 3d plots: Heatmap, Contour Plot, and Surface Plot

2.6: Correlating and plotting two user-defined measures.
We have run a simulation where r(s,d) is varied from -1 to 1 and r(s,i) is varied from 0 to 1. As

discussed in the paper, the relationship between two measures of theoretical interest can be computed

and observed over varying input parameters. Because Self-Enhancement and Ingroup Favoritism are

both calculated involving some combination of these two input measures, it may be useful to view the

unique relationship between them as their underlying inputs vary.

To do this, you must first create a new user-defined measure specified as the correlation between Self-

Enhancement and Ingroup Favoritism. In the Model Customization Section, click on the plus button to

create a new measure. Name this new measure ‘r(SE,IF).’ For the formula, enter “#1, #2” and click on

‘Self-Enhancement’ and ‘Ingroup Favoritism.’ This will instruct the GUI to fill in #1 and #2 with the

first and second measures you selected. Finally, select ‘correlation,’ and click apply (example below).

 “Apply”

12

Alternatively, you can simply type the function and measures you would like. In this case, you would

type ‘corrcoef(Self-Enhancement, Ingroup Favoritism) into the formula box. For more details on

customizing measures, see section 2.9.

Click accept and plot a heatmap of this measure. The displayed colors represent the Pearson’s r value for

Self-Enhancement and Ingroup Favoritism at each step of the each varied parameter.

2.7: Plotting select data.
After generating a complex and time-consuming simulation, we have made it possible for the user to

plot simpler graphs displaying a selection of data without having to recompute a simple simulation. This

function allows you to display a histogram or line of data at any given step of a varied parameter. The

ability to create simpler figures given complex simulations is described below.

Plotting a histogram when a single parameter has been varied

When a single parameter has been varied over a series

of steps, the data are best visually represented as a line

representing the mean and standard deviation calculated

at each step of simulation. It is possible to view a

histogram of the data at any single step of that

variation, however, using the following technique. Note

that for this example, r(s,i) has already been varied

from -0.7 to 0.7 in steps of 0.1.

If you would like to view Self-Enhancement when r(s,i)

has a mean of zero, add a histogram plot of Self-

Enhancement to the list of plots and click ‘Plot

Selected.’ Note that a line plot is generated.

13

A line plot is displayed because a single histogram is impossible to generate for all simulations of a

varied parameter. In order to view a histogram of Self-Enhancement values where r(s,i) is equal to zero,

move your mouse over the red line where the x-axis displays zero. Note that tooltip box that follows

your mouse: this displays the ‘slice’ of the simulation that will be plotted as a histogram. Click your

mouse with the black dot placed where zero is marked on the x-axis, then click ‘set.’

The resulting histogram represents the distribution of simulated Self-Enhancement data points for the

simulation where r(s,i) is equal to zero. In essence, we have selected and plotted one of the fifteen

simulations that was run (at - 0.7, -0.6, -0.5, -0.4, …, 0.5, 0.6, 0.7).

Plotting a histogram when two parameters have been varied

A similar technique is available when two parameters have been varied. This allows the user to plot a

histogram at any particular point of each of two varied parameters. The user must simply click the

mouse where s/he wishes to select and plot the distribution of a single measure. In the example below,

r(s,d) has been varied from -0.75 to 0.75 in steps of 0.25, and r(s,i) has been varied from -0.5 to 0.5 in

steps of 0.1. We will plot a histogram of Self-Enhancement, selecting a point where r(s,d) is simulated

with a mean of -0.25 and r(s,i) is simulated with a mean of 0.4.

14

Plotting a line when two parameters have been varied

Finally, you may want to select a series of parameter variations to view when two parameters have been

varied. This is equivalent to selecting a linear slice of a heatmap or contour plot. The same method is

used to do this, but the mouse must be dragged along the series of variations you would like to view.

To view variation in Self-Enhancement as r(s,i) is varied where r(s,d) has a mean of zero, drag your

mouse vertically down the center of the plot from top to bottom. When finished, click set. The resulting

line plot represents Self-Enhancement at each varying step of r(s,i), with r(s,d) held constant at zero.

2.8: Modifying Plot Properties Using Plot Tools
We have also included in the interface the ability to modify properties of user-generated figures. The

“Plot Tools” button in the model customization section will allow you to edit all modifiable properties

of a figure that you create – a brief example follows.

In order to modify the properties of a figure, you must have at

least one figure open. With the default simulation inputs

specified, create a histogram of Self-Enhancement. It should

look similar to the default figure to the right. In this example,

we will replace the default x-axis label to reflect our custom

specification.

15

Now that you have an open figure, click on the button labeled “Plot Tools.” This will open a new

window. Click on ‘Figure 1’ to specify that you would like to edit the figure you just created. This

should populate the empty box to the right with the objects available for modification. Now click on

‘xlabel,’ to specify that you would like to modify the

text (string) value of the x-axis. Your plot tools window

should look like the example to the right. Note that the

property modification box displays {‘Property’,

‘Value’}: these defaults instruct you to enter values in

this format.

To change the x-axis label, we must instruct the

simulator to modify the ‘String’ property of the ‘xlabel’

object. With ‘xlabel’ still selected, enter the following

into the text box: { ‘String’, ‘Example x-label’ }. In all

cases, the first element you enter will instruct the simulator

to target that particular property. What you enter for ‘Value’

will be what you set the property to.

Clicking ‘Apply’ will apply your changes. Clicking ‘OK’

will apply your changes and close the plot tools window.

Click either button and note that the x-label on our

histogram of Self-Enhancement now reflects the change.

You can modify any property that isn’t made read-only by

Matlab. An exhaustive list of objects and their properties

can be found here.

2.9: Menu Options
The Menu Section provides several options to the user. These options are detailed below.

File menu:

New: Closes the window of the current simulation and opens a window with a new simulation.

Open: Loads a previously saved Matlab workspace (.mat) file into the current simulation

 interface.

Save: Saves your current simulation in the form of a Matlab workspace file (.mat).

Save As: Allows you to rename the currently saved simulation.

http://www.mathworks.com/help/matlab/graphics-objects.html

16

Options menu:

Add notes: Opens a window where you can enter in any notes you wish to keep. These notes are

stored in this window.

Number of data points: Allows you to increase or decrease the number of data points to draw for

each simulation. The default is 10,000. Larger numbers will produce cleaner simulations but will take

longer and consume more computational resources. The maximum is 1,000,000.

Use stored distributions: Toggling this option instructs the simulator to use previously generated

sampling distributions if they exist. See the Simulation object section of the manual for more

information. The default is set to ‘on.’

Interpolate: Toggling this option instructs the simulator to apply a smoothing technique to

heatmaps and contour plots. The default is set to ‘on.’

Help menu:

About: Opens the about screen with contact and version information.

Manual: Opens the manual in PDF form.

2.10: Example of Detailed Measure Customization

For the ease of the user, we have created a measure customization interface for those interested in

exploring measures that require either mathematical manipulations or references to other preexisting

measures. The four ways to navigate the add/edit measures window are described below.

1.) The approach that gives the user the most control over measure customization is simply to type

in the desired formula for any new measure using your keyboard. Remember that formulas must

be entered using Matlab-recognized operators (for example, * for multiplication, or

corrcoef(measure1,measure2) for a correlation between two measures).

2.) Users can also copy and paste measures into the formula box using standard copy/paste keyboard

shortcuts. To copy a measure, select it from the ‘Existing Measures’ list and press Ctrl + C. To

paste this measure, click on the formula box and press Ctrl + V.

3.) For users who prefer not to use keyboard shortcuts, you can enter the pound sign (#) followed by

a number in place of any measure you would like to enter into the formula box. Clicking the

‘Apply’ button then replaces each # symbol with a highlighted measure in the order specified by

the number following it. You can use ctrl + click or drag the mouse to select multiple measures.

For example, entering into the formula box: [#1, #3, #2], selecting three measures, and clicking

apply will combine the selected measures into a single formula representing the first, third, and

second measures you clicked (in that order). For an example of this, refer to the illustrative figure

following this section.

17

4.) For users who are unfamiliar with Matlab operators, the ‘Apply’ button will also prepend the

formula entered in the formula box with an operator and a set of parentheses. To do this, select

the radio button corresponding to the operator you would like to include and click the ‘Apply’

button. For example, clicking the ‘Apply’ button with “Self-Enhancement * Ingroup Favoritism”

in the formula box, and ‘Mean’ selected in the transformations list, would enter “mean(Self-

Enhancement * Ingroup Favoritism)” into the formula box.

A complete example of customization methods #3 and #4 can be seen in the figure below.

“Apply”

18

3.0 Under the Interface hood
 The IRM Simulation package is built on the widely used and commercially available

MATLAB(R) software package (website). Built with simplicity and generality in mind, the software is

split into three components. The first is a simulation component designed to run the underlying model

computations. The second is a graphics component designed to give the user the graphing tools we have

found useful for exploring the IRM. The last is the user interface to make the process as friendly as

possible.

 Part of the usefulness in splitting the simulation package into components is its generality.

Users familiar with MATLAB can take full advantage of it by downloading the software files. For

practical reasons, the graphics and interface components add some restrictions on what can be done

(more below). A proficient MATLAB user can skip these restrictions by using the simulation

component directly.

 Our goal in this section of the manual is to twofold. First, to give proficient MATLAB users the

tools they need to go beyond the interface. The second is to give those unfamiliar with MATLAB the

tools they need to begin to move beyond the interface. The interface includes an option to write your

own MATLAB code. We provide the tools (with examples) for doing so below.

3.1 Simulation
The simulation object is responsible for computing, modifying, and storing simulation data. It

stores an input matrix containing the six primary baseline correlation inputs in the IRM, any

modifications made to these input measures, user-defined measures representing social-psychological

phenomena (as predicted by the IRM), user-defined (custom) measures of interest, and samples

generated through simulation. Several simple functions allow the user to view and modify any of these

variables. The simulation object also has the ability to save simulations or load a previous one.

The following section walks the user through all available properties and methods. A summary

table containing these properties and methods can be referenced at the end of the section (Table 1). The

simulation component (called object in Matlab), has properties (variables), and methods that act on these

variables. To full understand how to use the simulation object, you should become familiar with the

properties and methods. They are described below.

simulate() (method)

This command initializes the simulation object, creating a new simulation. This simulation object

stores both the variables and the methods used when running a simulation. This includes storing and

manipulating the input matrix, adding or removing new measures, and generating and storing simulation

data.

Use:

http://www.mathworks.com/products/matlab/

19

Note that the user can create as many simulation objects as desired, and each one can run a

different simulation. Beware, however, that more extensive simulations with one simulation object, and

having more than a single simulation object at a time, will require more computational resources. Very

large simulations may require a large amount of system memory, CPU usage, or both.

Input (property)

The IRM has five base input measures. These measures specify the correlation between

individual’s ratings over traits. Each input measure is specified by two parameters: ρ – the true

underlying correlation between traits in the population, and N – the number of traits each individual

rates. These two parameters specify the population distribution from which individuals are drawn (see

Appendix A and the text for details).

The Input property stores these input measures as a matrix. The first column is the name of the

measure (see main text, figure below). The second and third columns are the ρ and N values. These

values can be changed with the modify_input() method.

modify_input() (method)

Syntax:

sim.modify_input(measure)

Where measure is a valid measure to modify, specified in the cell format: {name, ρ , N}.

This function allows the user to modify the Input matrix. Modifications can be made to ρ or N

for any baseline input measure. Input values can be set to a single point (e.g., 0.25) or several points. To

input multiple specific values, enclose the values in brackets, and separate by commas: [0.25, 0.5, 0.75].

To input a range of values, specify the range and the distance between points. For example, the input [-1

: 0.1 : 1] sets the input to -1, -0.9, -0.8, -0.7, …, 1. Any modified input measure remains modified until

the user changes it or initializes a new simulation. For computational reasons, we limit the number of

simultaneously varied inputs to two.

Use:

Example use:

20

npoints (property)

This property specifies how many individuals to simulate. That is, it specifies how many random

samples to draw for each of the input measures. Increasing this number results in more samples and a

slower simulation. Decreasing this number results in fewer samples, but greatly speeds up the

simulation. The default number of data points to sample when simulating each baseline measure is

10,000. Unless your computer has 8+ GB of RAM, we recommend a maximum of 1 million individuals.

Use:

get_samples() (method)

Syntax:

sim.get_samples();

As the workhorse of the simulation, this function is responsible for generating simulation data.

Individuals (specified by npoints) are randomly sampled from the underlying distribution specified by

Input. These data points are then stored in randomsamples.

21

Use:

randomsamples (property)

After get_samples() is called, the resulting samples are stored in randomsamples. When all the

parameters in Input are scalar, the data is stored in a npoints x 6 double-precision matrix stored inside a

1x1 cell array.

When one or two parameters are varied, the resulting samples are stored as a npoints x 6 double

precision matrix stored inside an n x m cell array (varying one input parameter results in a 1xm cell

array, varying two input parameters results in an n x m cell array). Each cell stores the results from one

set of input values. We illustrate this below.

Example use (next page):

22

measures (property)

This property stores the name and formula of each user-defined measure. A measure represents

any mathematical manipulation of the six baseline input correlations or any measure that results from

them (see main text for details). When initializing a new simulation object, the measures variable is

initialized to contain the four user-defined measures referenced in the paper (Self-Enhancement, Ingroup

Favoritism, Differential Accuracy, and Intergroup Accentuation).

23

measures is a n x 2 cell matrix. The two columns store each measure’s name and formula

(respectively), while each row represents a unique user-defined measure. Users can add, edit, or remove

a measure from this list.

add_measure() (method)

Syntax:

sim.add_measure(measure)

Where measure is a valid user-defined measure specified in the cell format: {name, formula}

This function adds a new measure to the list currently stored in the measures. The user is able to

create custom measures of varying scope and complexity in order to observe empirical relationships

within (but not limited to) the IRM.

For any custom measure, the following conventions for name and formula must be followed: text

must be in string format and formulas must boil down to one the five input measures. Any Matlab-

recognized operators and many Matlab functions (mean, corrcoeff, etc…) can be used.

Use:

remove_measure() (method)

Syntax:

sim.remove_measure(measure)

Where measure is a valid user-defined measure specified in the cell format: {name} or the

format {name, formula}.

If a user-defined measure appears redundant, cumbersome, or nonsensical, the user can use this

function to remove a measure from measures. The same {name, formula} syntax applies here, although

the user can also shorten the input simply to {name}. Once removed, a user-defined measure is no

longer available, however, it can be simply added again using add_measure().

Use:

24

edit_measure() (method)

Syntax:

sim.remove_measure(measure)

Where measure is a valid user-defined measure specified in the cell format: {name, formula}.

This function allows the user to edit the name or formula of any current measure in measures.

Use:

Example use:

25

save() (method)

Syntax:

sim.save(overwrite)

Where overwrite is a logical value specifying whether or not to overwrite a previously saved file.

This function saves all properties of the current simulation object to a filename and location

specified by the user. If overwrite is true, the save function overwrites the previously specified save file

and path without first prompting the user to enter them.

load() (method)

Syntax:

sim.load(overwrite)

This function loads the properties of a previously saved simulation into the current simulation

from a filename and location specified by the user.

r and dr (read-only properties)

Generating random samples from a non-standard distribution requires a well-defined and

computable distribution to sample from. The correlation coefficient distribution cannot be computed

analytically, but it can be approximated to arbitrary precision (see Appendix A). The precision with

which we can compute this distribution, and therefore the precision with which we can generate unique

samples, is determined by the discrete values over which we approximate the distribution. The more

fine-grained these values become, the more accurate the simulation will be.

The property dr determines this precision; smaller values indicate better precision, but at the cost

of computational resources. The default value is dr = 0.00001, which we have found to be sufficient (see

Appendix A). The user is able to modify this variable in order to make these approximated distributions

even finer in their discrete points for a more robust simulation, or coarser for a quicker simulation. The

dr property can be adjusted using the sample_precision() method.

26

sample_precision() (method)

Syntax:

sim.sample_precision(dr)

Where dr is a scalar value.

Adjusts the sampling precision of the simulation by setting the dr and r properties.

Use:

rcdf (read-only property)

Approximating the correlation coefficient distribution and drawing samples from it takes time.

As the distributions are computed, we (optionally) store the result in rcdf so that subsequent draws using

the same parameters become faster. This is a read-only property, but its use can be modified by setting

the ncdf and use_cdfs properties below.

Previously computed cumulative correlation coefficient distributions generated under some value

of ρ are stored in a matrix where the first and second columns represent the values of ρ and N,

respectively, and the remaining columns store the cdf. Each row is a new cdf, specified by its ρ and N.

ncdf (property)

Simulations that do not reference previously computed distributions will spend time and

computer resources computing new distributions before sampling, but saving many distributions to ease

computing requires a large amount of system memory. Thus the user can choose how many previously

computed correlation coefficient distributions to save. The more distributions stored, the faster the

simulation will be (especially for large simulations), but more system memory will be used. ncdf tells

the simulation the maximum number of distributions to store. The default value is 200.

use_cdfs (property)

This property specifies whether or not the simulator should store the computed r-distributions

when generating samples. The default value of this property is true (1). The user can set this value to

false (0) if s/he wishes to run all simulations without referencing any previously computed distributions.

This results in slower simulations, but less system memory is used.

Both of these properties can be set by simply treating them as fields in a structure:

sim.ncdf = 100;

sim.use_cdfs = false;

27

compute() (method)

Syntax:

sim.compute(measure)

Where measure is the name of a formula, or a formula for an undefined measure.

This function is responsible for applying computing the measure specified. Because formulas for

custom measures are specified in string formats, it is necessary for the simulator to first deconstruct a

measure formula into its constituent parts before performing a calculation. The simulation object does

this explicitly.

For example, ‘Self-Enhancement’ is defined as ‘r(s,d) – r(s,i).’ compute() accesses the values for

‘r(s,d)’ and ‘r(s,i)’ (as stored in randomsamples) and applies the ‘minus’ operator, yielding a value for

‘Self-Enhancement’ for each individual and simulation input parameters.

Note: the compute() function returns values in a cell array the same size as randomsamples,

where each cell contains the result of the computation. It is difficult to plot numeric values stored in cell

arrays, but cells can be converted to matrix format using the Matlab-native function cell2mat. We show

its use in a full example below.

Example:

compute_correlation() (method)

Syntax:

sim.compute_correlation(measure)

Where measure is specified in the cell format {measure 1, measure 2, … , measure k}.

The highest-level function of the IRM (and this simulator) is to predict and simulate relationships

between user-defined measures of interest. Because of the complexity of these relationships, whether

varying one or more input parameters, this function is included separately in order to perform the

function of compute() in the specific case of observing correlations between measures. Correlations are

returned in a 1 x k cell array. Inside each cell array is a double precision matrix of correlations the same

size as randomsamples.

An incomplete list of some Matlab functions that may be useful to you follows this section. A

comprehensive list of Matlab-native operators can be found here.

http://www.mathworks.com/help/matlab/ref/cell2mat.html
http://www.mathworks.com/help/matlab/operators-and-elementary-operations.html

28

correlation_inputchk() (method)

Syntax:

is_correlation = sim.correlation_inputchk(measure)

 Where measure is specified as a string. is_correlation is returned as a logical.

 This function checks the formula for the input measure determined by the user. If the user

requested the Matlab operators ‘corrcoef’ or ‘cov’, this function returns a logical specifying that the

target measure formula includes a correlation. The measure can then be entered into sim.compute() or

sim.compute_correlation().

3.3 Table of some useful Matlab functions

Function Purpose

mean() Computes the mean value

median() Computes the median value

std() Computes the standard deviation

sum() Computes the sum

exp() Computes the exponent

log() Computes the natural log

sqrt() Computes the square root

abs() Computes the absolute value

29

3.4 Tables of methods and properties

Item Function Implementation

Properties

Input Stores baseline measures and values read only

measures
Stores user-defined measures and formulas read only

npoints
Number of data points per simulation read/write access

randomsamples
Stores all simulated data points read only

dr
Distance between possible simulation values read only

rcdf
Matrix of possible values to sample read only

ncdf
Maximum number of previous cdfs to store read/write access

use_cdf
Determine whether to use and store cdfs read/write access

Methods

simulate Create new simulation object, ‘sim’ sim = simulate()

modify_input Edit one or more parameters in the input matrix modify_input()

get_samples Generate random samples given input parameters get_samples()

add_measure Create and name a new user-defined measure add_measure()

remove_measure Remove a current user-defined measure remove_measure()

edit_measure Edit the name or formula of a current measure edit_measure()

compute Computes values of measures from simulation data compute()

compute_correlation Calculate correlations between user-defined measures compute_correlation()

correlation_inputchk Checks to see if target measure requires correlation correlation_inputchk()

sample_precision Modify property dx to adjust sampling precision sample_precision()

load_variables Load simulation data or stored cdfs load_variables()

save Save current simulation save()

load Load saved simulation load()

30

3.2 Full working example in code
Following is an annotated full example of launching a new simulation, varying two baseline

input measures, generating samples using the modified input, and plotting a user-defined measure. This

example is comprised of the same steps that were taken to generate figure 1 in the paper. Note that the

resulting figure is unedited.

31

4.0 Graphics

We have created a set of useful graphing tools to accompany the IRM simulation. Of course,

these tools do not need to be used with the simulation object, but we have found them helpful. Novice

users of Matlab may benefit from the cohesive organization the graphics objects provide, while

advanced users may benefit from the transparency and accessibility of its structure.

The graphics object includes a set of plotting methods and stores the relevant Matlab handles for

later modification. Several simple functions allow the user to view and modify these variables in order

to change the way the plot looks. The graphics object also has the ability to save figures for later

reference or for use in presentation and publication.

graph() (method)

A graphics object can be loaded via the graph() command. This initializes a graphics object, but

does not plot anything. You can view its methods and properties in the command window

Use:

plot() (method)

Syntax:

gr.plot(sim, measure, plot_type);

gr.plot(sim, measure);

Where sim is a valid simulation object, and measure is a valid measure. Optionally, plot_type

can be ‘scatter’, ‘histogram’, ‘line’, ‘heat’, ‘contour’, or ‘surface.’ If no plot type argument is supplied,

the plot method will choose one based on the simulation object supplied.

If no plot_type argument is supplied, the plot method will choose one based on the

simulation object supplied. If there are no varied input parameters, the default is ‘histogram.’ For one

varied parameter, the default is ‘line,’ and for two varied input parameters, the default is ‘heat. If the

user is unsure of the best plot type for the current simulation, plot_type should not be supplied.

http://www.mathworks.com/help/matlab/ref/function_handle.html

32

Example unedited plot:

We encourage you to use the graphics toolbox creatively. By using Matlab’s native graphing

tools GUI, the user can edit generated complex plots without ever having to write complex code.

Each Matlab plot is made up of several parts, called objects. Each datum is graphed on a specific

axes, inside a specific figure. Each object has properties, and an identifying object handle. The axes

object, for example, has tick marks, grids, font sizes, and others as properties. The figure has colormap,

position, toolbar, and others as properties. The objects common to all plots you will create are: Figure,

Axes, xlabel, ylabel, and zlabel (note that zlabel is specific to 3d graphics). Each data object plotted (like

a line) also has its own properties, which we will discuss shortly. Any property can be changed using the

set_options() method.

set_options() (method)

Syntax:

gr.set_options(options);

Where options is an nx2 cell array with two columns: the object to change (e.g., ‘Axes’) and the

new property value (e.g., changing the ‘FontSize’). The property modifications (second column) must

also be in a cell array. Each row specifies a new object to modify. Many examples are given throughout

this section.

Figure (property)

Figure stores the handle for the generated figure object. Any figure property can be changed

using the set_options() method. These properties are set to default specifications any time a new figure

is generated. A list of figure properties can be found here.

http://www.mathworks.com/help/matlab/ref/figure_props.html

33

Use:

Axes (property)

Axes stores the handle for the axes contained in Figure. As with Figure, any axes property can

be changed using the set_options() method and similar input. A list of axes properties can be found here.

xlabel, ylabel, and zlabel (properties)

These objects are responsible for labeling the respective axes. The user is able to modify font

size and type, as well as the displayed text itself. Note that the zlabel only becomes available when

plotting in three dimensions (displaying data using a z-axes). A list of their properties can be found here.

As noted, the user can modify multiple objects at once by creating an nx2 cell matrix. Each row

contains the object, and the properties to modify:

Note that subsequent calls to set_options() do not reset properties modified on previous calls.

Recall that the plot command is the over-arching plotting tool for the graphics toolbox. It is the

smartest of the methods –it is able to choose the best plot for your data (randomsamples) and plot it

with reasonable results. But for more direct control over plots, the user should use the lower-level

graphing tools.

http://www.mathworks.com/help/matlab/ref/axes_props.html
http://www.mathworks.com/help/matlab/ref/xlabel.html

34

4.1 Functions for creating specific plots
Because output from the IRM can be displayed in several different formats, we have provided the

user with the most useful plots available in Matlab to graphically represent the simulation data. The user

should note that at minimum, all plot types take in some form of x- and y-input, as well as some

additional (optional) arguments. These additional arguments vary based on the plot type: for example,

all three-dimensional plots require a z-input. Similarly, line plots can, if requested, display the error

measure above and below mean values.

plot_scatter() (method)

Syntax:

gr.plot_scatter (x, y);

gr.plot_scatter (x, y, options);

Where x and y are numeric vectors of equal length and (optionally) options is a cell vector of

properties to modify when drawing the scatterplot.

If the user is interested in viewing how two measures covary, s/he can view simulation data in a

scatterplot. There are two mandatory inputs: an x-vector (specifying each point’s x-value) and a y-vector

(specifying each y-value). Thus, each point will have x- and y-coordinates (this requires the x- and y-

vectors to be the same size). Measures to plot can be any combination of the five input variables or any

measure that boils down to them. The user may also enter property-modifying options in cell format.

Arguments to send in can be prepared by using the compute() function. This can also be done for

both target measures at once, as long as the results are stored in separate x- and y-vectors (shown in the

example). Note that this and all subsequent plotting functions require numeric values stored in matrix

format (not cell arrays) – it may in some cases be necessary to convert stored data from cell to numeric

format using Matlab’s cell2mat command.

Use:

http://www.mathworks.com/help/matlab/ref/cell2mat.html

35

This is the default display for a scatterplot. We can

modify properties of this figure or its containing objects

to make it look differently.

36

plot_histogram() (method)

Syntax:

gr.plot_histogram(xfill, yfill)

gr.plot_histogram([], [], xline, yline)

gr.plot_histogram(xfill, yfill, xline, yline)

gr.plot_histogram(xfill, yfill, xline, yline, options)

Where xfill or xline is a vector of bins, and yfill or yline is a vector of frequencies or

probabilities. To draw a filled histogram, send in xfill and yfill. To view a line histogram, send in

xline and yline. To view both, send in all four arguments (note the x and y values for the filled and line

histograms can be different). options is an optional input composed of a cell vector of properties to

modify when drawing the histogram (see set_options() above).

To plot a histogram, the user must first prepare the samples (e.g., call compute() or

compute_correlation()). To do this, the user should define which measure to plot, specify a range and

number of bins into which measure values can fall, and to calculate the number of values in each bin

(done in the example below using the Matlab’s native hist command). The plot_histogram() method will

plot the distribution specified by input y over x. The output from the hist command is a frequency

distribution of counts. If you wish to plot the probability distribution, you must first scale the frequency

distribution by its sum (shown in the example below).

Use:

http://www.mathworks.com/help/matlab/ref/hist.html

37

This is the default display for a filled histogram. See

below for an example of how to modify several relevant

properties and redraw.

plot_line() (method)

Syntax:

gr.plot_line(x, y)

gr.plot_line(x, y, e)

gr.plot_line(x, y, options)

gr.plot_line(x, y, e, options)

38

Where x is a vector of input values and y is a vector of derived values. x and y must be the same

size. options is an optional input composed of a cell vector of properties to modify when drawing the

line plot.

Line plots become available once one or more input parameters have been varied. This type of

plot allows the user to display any baseline or user-defined measure values over steps of a varied input

parameter. We have found that, most often, the line plotted is the mean of some measure (like Self-

Enhancement) over the varied input parameter.

Unique to the line plot is the ability to display an error measure (typically the standard deviation)

extending above and below the mean plotted value at each step of the varied input parameter. To do this,

the user must compute and send in a vector containing the standard deviation of the target measure at

each level of the varied parameter as argument e, following the required inputs x and y.

Use:

39

We encourage you to use the graphics toolbox creatively. For example, if you want to look at the

deviation of a histogram over several iterations of a simulation, use the plot_line() method instead of the

plot_histogram() method to plot the histogram with an error measure.

40

4.2 3-dimensional plots

The three functions described below generate three-dimensional plots. 3d plots only become

available once two input parameters have been varied. In all cases, varied input parameters are displayed

on the x- and y-axes. The user is able to plot a baseline input measure, user-defined measure, or the

correlation between any combination of these on the z-axis.

A 3d plot requires the user to send in a vector of steps for the x-axis, a vector of steps for the y-

axis, and a matrix of data points to display for the z-axis. For the x- and y-axes, the user can either

specify a range and number of steps or simply send in the steps specified when varying an input

parameter. The z-axis must be sent in as a matrix of numeric values, which should be computed using

the compute() function from the simulation object (or if the user wishes to plot the correlation between

two measures, using the compute_correlation() function).

In order to highlight major properties of each type of plot, the provided example follows a single

simulation plotted according to the three different 3d plot types. In this simulation r(s,d) is varied from -

1 to 1 in 20 steps, r(s,o) is varied from -0.5 to 0.5 in 20 steps, and the measure to plot on the z-axis is the

mean level of ingroup favoritism at each step of the simulation. For each of the three plot types, the user

is walked through the initial (default) plot, how to modify universal properties, and properties/functions

specific to each plot type.

Simulation example for all three plot types:

plot_heat() (method)

Syntax:

gr.plot_heat(x, y, z)

gr.plot_heat(x, y, z, options)

Where x and y are each a vector of input values and z is a matrix of derived values. options

is an optional input composed of a cell vector of properties to modify when drawing the heatmap.

41

The heatmap displays a two-dimensional figure using colors to represent variation in values on a

z-axis. This plot type allows the user to observe the general pattern of a target measure over two varying

input measures.

It is often useful to the user to add a colorbar to the figure in order to provide reference for

specific colors and values – this can be accomplished using Matlab’s colorbar command. And you can

always change the colormap to something else as well.

http://www.mathworks.com/help/matlab/ref/colorbar.html
http://www.mathworks.com/help/matlab/ref/colormap.html

42

plot_contour() (method)

Syntax:

gr.plot_contour(x, y, z)

gr.plot_contour(x, y, z, options)

Where x and y are each a vector of input values and z is a matrix of derived values. options

is an optional input composed of a cell vector of properties to modify when drawing the contour plot.

The contour plot displays a two-dimensional figure using different colors to represent variation

in values on the z-axis. Instead of filling the entire figure (like the heatmap), this plot type instead

displays discrete lines along a series of contours so that the user can observe the pattern of a particular

target value over varying input parameters.

43

plot_surface() (method)

Syntax:

gr.plot_surface(x, y, z)

gr.plot_surface(x, y, z, options)

Where x and y are each a vector of input values and z is a matrix of derived values. options

is an optional input composed of a cell vector of properties to modify when drawing the surface plot.

The surface plot displays the third dimension of data by allowing the user to rotate the axes

within a figure. The target measure is plotted according to a color/value pairing (as in the heatmap and

contour plot). Unique to the surface plot is the addition of a rotation component that allows the user to

rotate the figure in order to view a 3-d representation in 2-d space.

Note that the surface plot will look identical to the heatmap, because its default view is from

above. In order to view the surface in three dimensions, the user must toggle the ‘Rotate 3D’ option in

the plot toolbar before clicking and dragging the axes itself.

44

For the example, we have added a new measure in order to make the best use of a surface plot:

the correlation between Ingroup Favoritism and Self-Enhancement.

 (click the ‘Rotate 3D’ button to activate 3D rotation)

45

4.3 Tables of methods and properties.

Table 2: Properties and methods of the graphics object

Item Function Implementation

Methods

graph Creates a new graphics object, ‘gr’ gr = graph();

plot Chooses and returns a plot based on data entered plot();

plot_scatter Plots entered data in a scatterplot plot_scatter()

plot_histogram Plots entered data in a histogram plot_histogram()

plot_line Plots entered data in a line plot plot_line ()

plot_heat Plots entered data in a heatmap plot_heat()

plot_contour Plots entered data in a contour plot plot_contour()

plot_surface Plots entered data in a surface plot plot_surface()

set_options Sets current plot options set_options()

Properties

Figure Modify figure properties see set_options()

Axes Change axes limits, ticks, tick labels, etc see set_options()

Xlabel Change x label text, font, and font size see set_options()

Ylabel Change y label text, font, and font size see set_options()

Zlabel Change z label text, font, and font size see set_options()

Scatter Change scatter point color, size, marker, etc see set_options()

Fill Change fill color, border line, etc see set_options()

Line Change line width, color, style, etc see set_options()

Text Add string of text to figure see set_options()

46

5.0 Interface
The interface object is responsible for assigning callbacks to buttons, creating and storing

embedded figures, and displaying simulations as they are computed. Because the code associated with

the interface is read-only, callbacks and functions are not detailed. For the interested user, however, a

summary table containing the interface methods can be referenced below (Table 3).

5.1 Tables of methods

Item Function Implementation

click() Displays currently selected axes on large axes

add_measure() Opens a dialogue box to create a new measure

edit_measure() Edits a current user-defined measure

remove_measure() Deletes a current user-defined measure

add_plot() Queues a new measure & plot combination

remove_plot() Removes a current measure & plot combination

plot_selected() Plots the selected measure & plot combination

plot_all() Plots all queued measure & plot combinations

modify_input() Allows the user to modify the input matrix

file_menu() Executes options in the file menu

options_menu() Executes options in the options menu

help_menu() Executes options in the help menu

create_ui_graphics() Draws and redraws interface axes

message_center() Updates message center display

populate_lists() Fills menus and lists

update_axes() Sets properties of displayed axes

47

6.0 Example Code
Code used to generate figures 1-4 in the paper:

function create_figures(fig)

switch fig
 case 1
 sim = simulate();

 %% Panel a

 x = 0 : .1 : 1;
 input = {
 'r(s,d)', x , 26
 'r(s,i)', [0.2 0.5 0.8], 26};
 sim.modify_input(input);
 sim.npoints = 1e7;

 sim.get_samples();

 y = cell2mat(sim.compute('mean(Self-Enhancement)'))';

 gr = graph();

 colororder = repmat([0.2 0.5 0.8]', [1,3]);
 options = ...
 {
 'figure', {'Name', 'Figure 1a'}
 'axes' , {'YLim', [0.0, 0.8], 'ColorOrder', colororder, 'XGrid',

'off',...
 'YGrid', 'off', 'Xlim', [0 1], 'XTick', (0:.2:1) }
 'line' , {'LineWidth', 4 }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Self-

Positivity, r_{S,D}'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Self-

Enhancement'}
 'legend', {'r_{S,I} = 0.20','r_{S,I} = 0.50','r_{S,I} =

0.80','Location','NorthWest'}
 };

 gr.plot_line(x, y, options);

 %% Panel b
 input = {
 'r(s,d)', [0.2 0.5 0.8], 26
 'r(s,i)', 0 : .1 : 1 , 26};
 sim.modify_input(input);
 sim.npoints = 9e6;

 sim.get_samples();

 x = (0 : .1 : 1);
 y = cell2mat(sim.compute('mean(Self-Enhancement)'))';

48

 gr = graph();

 colororder = repmat([0.2 0.5 0.8]', [1,3]);
 options = ...
 {
 'figure', {'Name', 'Figure 1a'}
 'axes' , {'YLim', [0.0, 0.8], 'ColorOrder', colororder, 'XGrid',

'off',...
 'YGrid', 'off', 'Xlim', [0 1], 'XTick', (0:.2:1) }
 'line' , {'LineWidth', 4 }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Projection

to Ingroup, r_{S,I}'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Self-

Enhancement'}
 'legend', {'r_{S,I} = 0.20','r_{S,I} = 0.50','r_{S,I} =

0.80','Location','NorthEast'}
 };

 gr.plot_line(x, y, options);

 case 2
 sim = simulate();
 sim.npoints = 9e6;
 sim.get_samples();

 bins = '-1:.01:1';
 measures = '[r(s,o), r(s,i)]';

 func = sprintf('hist(%s, %s)', measures, bins);

 x = eval(bins);
 y = cell2mat(sim.compute(func));
 y = bsxfun(@rdivide, y, sum(y));

 %

 colororder = repmat([0.2 0.5 0.8]', [1,3]);
 options = ...
 {
 'figure', {'Name', 'Figure 2a', }
 'axes' , {'ColorOrder', colororder, 'XTick', (-1:.5:1), 'XGrid', 'on',

'YGrid', 'off',...
 'XLim', [-1 1], 'YLim', [0 .035], 'YTick', linspace(0,.035,4),

'YTickLabel', [], 'XTickLabel', [] }
 'line' , {'LineWidth', 5, 'LineSmoothing', 'on' }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', []}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String',

'Probability'}
 'legend', {'Projection to Outgroup', 'Projection to Ingroup',

'Location', 'NorthWest'}
 };

 gr = graph();
 gr.plot_line(x, y, options);

49

 set(gca, 'FontSize', 14)

 %% Panel b

 measures = '[r(o,d), r(i,o), r(i,d)]';

 func = sprintf('hist(%s, %s)', measures, bins);

 x = eval(bins);
 y = cell2mat(sim.compute(func));
 y = bsxfun(@rdivide, y, sum(y));

 %
 colororder = repmat([0.2 0.5 0.8]', [1,3]);

 options = ...
 {
 'figure', {'Name', 'Figure 2a', }
 'axes' , {'ColorOrder', colororder, 'XTick', (-1:.5:1), 'XGrid', 'on',

'YGrid', 'off',...
 'XLim', [-1 1], 'YLim', [0 .065], 'YTick', linspace(0,.065,4),

'YTickLabel', [], 'XTickLabel', [] }
 'line' , {'LineWidth', 5, 'LineSmoothing', 'on' }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', []}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String',

'Probability'}
 'legend', {'Outgroup Positivity, Intergroup Accentuation', 'Ingroup

Positivity', 'Location', 'NorthWest'}
 };

 gr = graph();
 gr.plot_line(x, y, options);
 set(gca, 'FontSize', 14);

 %%
 measures = '[Ingroup Favoritism, Self-Enhancement, Differential Accuracy]';

 func = sprintf('hist(%s, %s)', measures, bins);

 x = eval(bins);
 y = cell2mat(sim.compute(func));
 y = bsxfun(@rdivide, y, sum(y));

 %
 colororder = repmat([0.2 0.5 0.8]', [1,3]);

 options = ...
 {
 'figure', {'Name', 'Figure 2a', }
 'axes' , {'ColorOrder', colororder, 'XTick', (-1:.5:1), 'XGrid', 'on',

'YGrid', 'off',...
 'XLim', [-1 1], 'YLim', [0 .04], 'YTick', linspace(0,.04,4),

'YTickLabel', [] }
 'line' , {'LineWidth', 3, 'LineSmoothing', 'on' }

50

 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Correlation

Coefficient'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String',

'Probability'}
 'legend', {'Ingroup Favoritism', 'Self-Enhancement','Differential

Accuracy', 'Location', 'NorthWest'}
 };

 gr = graph();
 gr.plot_line(x, y, options);
 set(gca, 'FontSize', 14);

 case 3
 sim = simulate();
 %% Panel a

 sim.npoints = 5e5;
 x = linspace(0, .999, 20);
 sim.modify_input({'r(s,d)', x, 26});

 measure = 'corrcoef([r(i,o), Self-Enhancement, Ingroup Favoritism,

Differential Accuracy])';

 sim.get_samples();
 %
 y = cell2mat(sim.compute(measure));

 % Don't plot the zero mean ones...
 mu = nanmean(y);
 f = abs(mu) < 0.005; % reasonable threshold.
 y(:,f) = nan;

 colororder = repmat(linspace(0,.5,2)', [1,3]);
 linestyleorder = {'-', ':', '--' };
 options = ...
 {
 'figure', {'Name', 'Figure 3a', 'Color', 'white'}
 'axes' , {'ColorOrder', colororder, 'LineStyleOrder', linestyleorder,

'XGrid', 'on', 'YGrid', 'off', 'XTick',0:.25:1, 'Xlim', [0 1], 'YTick', -

0.75:.25:0.75, 'YLim', [-0.76, 0.76]}
 'line' , {'LineWidth', 5 }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Self-

Positivity, r_{S,D}'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Correlation

Coefficient'}
 'legend', {'r_{IA,SE}*', 'r_{IA,IF}', 'r_{IA,DA}*', 'r_{SE,IF}',

'r_{SE,DA}', 'r_{IF,DA}', 'Location', 'NorthEastOutside'}
 };

 gr = graph();
 gr.plot_line(x, y, options);

 legend('boxon');

 %% Panel b

51

 sim.modify_input({'r(s,i)', x, 26; 'r(s,d)', 0.5, 26});

 measure = 'corrcoef([r(i,o), Self-Enhancement, Ingroup Favoritism,

Differential Accuracy])';

 sim.get_samples();
 %
 y = cell2mat(sim.compute(measure));

 % Don't plot the zero mean ones...
 mu = nanmean(y);
 f = abs(mu) < 0.001; % reasonable threshold.
 y(:,f) = nan;

 colororder = repmat(linspace(0,.5,2)', [1,3]);
 linestyleorder = {'-', ':', '--' };
 options = ...
 {
 'figure', {'Name', 'Figure 3b','Color', 'white'}
 'axes' , {'ColorOrder', colororder, 'LineStyleOrder', linestyleorder,

'XGrid', 'on', 'YGrid', 'off', 'XTick',0:.25:1,'Xlim', [0 1], 'YTick', -

0.75:.25:0.75, 'YLim', [-0.76, 0.76] }
 'line' , {'LineWidth', 5 }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Projection

to Ingroup, r_{S,I}'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Correlation

Coefficient'}
 'legend', {'r_{IA,IF}', 'r_{SE,IF}', 'r_{SE,DA}', 'r_{IF,DA}',

'Location', 'NorthEastOutside'}
 };

 gr = graph();
 gr.plot_line(x, y, options);

 legend('boxon');
 set(legend, 'visible', 'off')

 %% Panel c

 x = linspace(-0.5, 0.5, 20);
 sim.modify_input({'r(s,o)', x, 26;'r(s,i)', 0.5, 26; 'r(s,d)', 0.5, 26});

 measure = 'corrcoef([r(i,o), Self-Enhancement, Ingroup Favoritism,

Differential Accuracy])';

 sim.get_samples();
 %
 y = cell2mat(sim.compute(measure));

 colororder = repmat(linspace(0,.5,2)', [1,3]);
 linestyleorder = {'-', ':', '--' };
 options = ...
 {

52

 'figure', {'Name', 'Figure 3c','Color', 'white'}
 'axes' , {'ColorOrder', colororder, 'LineStyleOrder', linestyleorder,

'XGrid', 'on', 'YGrid', 'off', 'XTick',-0.5:.25:0.5, 'Xlim', [-0.5 0.5], 'YTick', -

0.75:.25:0.75, 'YLim', [-0.76, 0.76] }
 'line' , {'LineWidth', 5 }
 'xlabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Projection

to Outgroup, r_{S,O}'}
 'ylabel', {'FontSize', 22, 'FontName', 'Arial', 'String', 'Correlation

Coefficient'}
 'legend', {'r_{IA,SE}*', 'r_{IA,IF}', 'r_{IA,DA}*', 'r_{SE,IF}',

'r_{SE,DA}', 'r_{IF,DA}', 'Location', 'NorthEastOutside'}
 };

 gr = graph();
 gr.plot_line(x, y, options);

 legend('boxon');
 set(legend, 'visible', 'off')
 case 4
 %% Panel a

 sim = simulate();

 sim.npoints = 1e5;
 x = linspace(0, 1, 30);
 y = linspace(0, 1, 30);
 sim.modify_input({'r(s,d)', y, 26; 'r(s,i)', x, 26});

 measure = 'corrcoef([Self-Enhancement, Ingroup Favoritism, Differential

Accuracy])';

 sim.get_samples();

 z = (sim.compute(measure));
 Za = z{1}(1);

 options = ...
 {
 'Figure' , {'Name', 'Figure 1a'}
 'Axes' , {'Box', 'on', 'XTick', linspace(0,.99,5), 'XTickLabel', [0

.25 .50 .75 1], 'YTick', linspace(0,.99,5), 'YTickLabel', [0 .25 .50 .75 1]}
 'image' , {'LabelSpacing',1000, 'LevelList', [-0.6, -.4, -.2, 0, .2,

.4, .6, .8], 'LineWidth', 4, 'LineColor', zeros(1,3)}
 'xlabel' , {'String', 'Projection to Ingroup, r_{S,I}'}
 'ylabel' , {'String', 'Self-Positivity, r_{S,D}'}
 'line' , {'LineSmoothing','on'}
 };

 gr = graph();
 gr.plot_contour(x, y, Za{1}', options);
 %% Panel b

 Zb = z{1}(3);

53

 options = ...
 {
 'Figure' , {'Name', 'Figure 2b'}
 'Axes' , {'Box', 'on', 'XTick', linspace(0,.99,5), 'XTickLabel', [0

.25 .50 .75 1], 'YTick', linspace(0,.99,5), 'YTickLabel', [0 .25 .50 .75 1]}
 'image' , {'LabelSpacing', 1e3, 'LevelList', [0.025; 0.1; 0.2; 0.3;

0.4; 0.5; 0.60], 'LineWidth', 4, 'LineColor', zeros(1,3)}
 'xlabel' , {'String', 'Projection to Ingroup, r_{S,I}'}
 'ylabel' , {'String', 'Self-Positivity, r_{S,D}'}
 };

 gr = graph();
 gr.plot_contour(x, y, Zb{1}', options);

 %% Panel c

 x = linspace(0, 1, 30);
 y = linspace(-0.5, 0.5, 30);

 sim.modify_input({'r(s,d)', 0.5, 26; 'r(s,i)', x, 26; 'r(s,o)', y, 26});

 measure = 'corrcoef([Self-Enhancement, Ingroup Favoritism, Differential

Accuracy])';

 sim.get_samples();

 z = (sim.compute(measure));
 Zc = z{1}(3);

 options = ...
 {
 'Figure' , {'Name', 'Figure 2c'}
 'Axes' , {'Box', 'on', 'XTick', linspace(0,1,5), 'XTickLabel', [0 .25

.50 .75 1], 'YTick', linspace(-.5,.5,5), 'YTickLabel', linspace(-.5,.5,5)}
 'image' , {'LabelSpacing', 1e3, 'LevelList', [0.1:0.1:0.5, 0.55],

'LineWidth', 4, 'LineColor', zeros(1,3)}
 'xlabel' , {'String', 'Projection to Ingroup, r_{S,I}'}
 'ylabel' , {'String', 'Projection to Outgroup, r_{S,O}'}
 };

 gr = graph();
 gr.plot_contour(x, y, Zc{1}, options);
 otherwise
 error;
end

end % create_figures

